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Greenhouse gases emissions, growth and the energy mix in Europe: a dynamic 

panel data approach 

Gustavo A. Marrero1 

Departamento de Análisis Económico (Universidad de La Laguna), FEDEA and ICAE 

Abstract: 

The 20/20/20 plan for Europe emphasizes the role of changing the energy model as a 

means to reach the objective of reducing emissions in 2020 by 20% with respect to 1990 

levels. Most empirical emission models are found within the framework of the 

Environmental Kuznetz Curve (EKC), which focuses on the relationship between 

emissions and economic activity, ignoring energy aspects. However, the importance of 

energy on GHG emissions is reflected by the fact that 80% of said emissions in Europe 

are currently due to the use and production of energy. This paper includes energy 

variables in an EKC dynamic panel data (DPD) model and uses the one-step system 

GMM estimator of Blundell and Bond (1998), which should allow for endogeneity, 

measurement error and omitted variable problems. For a panel of 24 European countries 

between 1990 and 2006, results suggest the existence of conditional convergence in 

terms of GHG emissions, no evidence of the EKC hypothesis, a positive and lower than 

one emissions-energy elasticity and how merely shifting the energy mix toward 

renewable sources (and, to a lesser extent, nuclear) would yield significant reductions in 

per capita emissions.  

JEL: Q43, Q42, Q53, C23 
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1. INTRODUCTION 

The European Union is positioned as one of the most active economic areas in terms of 

measures for combating greenhouse gas (GHG) emissions. In addition to ratifying the 

Kyoto Protocol in 2002, another prominent agreement was signed in December of 2008 

(20/20/20 plan), by which EU member countries committed to reduce emissions in 2020 

by 20% with respect to 1990 levels. This agreement also emphasizes the role of the 

changing energy model as a means to reach this objective. As such, the framework for 

2020 also establishes a reduction in primary energy consumption by 20% and an 

increase in the share of renewable energy as a part of overall energy consumption by 

20%. The importance of energy on GHG emissions is reflected by the fact that 80% of 

said emissions in Europe are currently due to the use and production of energy. The 

Stern report (2007) emphasizes that, in the world as a whole, almost 65% of total GHG 

emissions are due to energy. 

Most research on emissions is found within the framework of the Environmental 

Kuznetz Curve (EKC), which focuses on the relationship between emissions and 

economic activity, ignoring energy aspects.2 Even from an empirical point of view, 

there are few exceptions that simultaneously study the relationship between emissions, 

growth and energy consumption.3 This paper contributes to the existing literature and 

includes energy aspects in an EKC dynamic panel data (DPD) framework and uses the 

                                                 
2 The studies by Selden and Song (1994), Grossman and Krueger (1995) and Schmalensee et 

al. (1998) are consistent with the EKC hypothesis, while other authors, such as Holtz-Eakin and Selden 
(1995), Shafik (1994) or, more recently, Huang et al. (2008), do not present evidence to support this 
hypothesis. See also Dinda and Coondoo (2006) and Coondoo and Dinda (2008) for studies of the 
relationship between income and emissions. Wagner (2008) points out that many studies of the EKC 
made with traditional methods can be spurious. Brock and Taylor (2005), Stern (2004), Dinda (2004), 
Verbeke and Clercq (2006), among others, offers excellent surveys of the EKC topic.  

3 An exception is Ang (2007), which examines the dynamic relationship between pollutant 
emissions, energy consumption and economic growth under an integrated framework. 
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one-step system GMM estimator of Blundell and Bond (1998), which should allow for 

endogeneity, measurement error and omitted variable problems. For a panel of 24 main 

European countries between 1990 and 2006, results suggest the existence of conditional 

convergence in terms of GHG emissions, no evidence of the EKC hypothesis, a positive 

and lower than one emissions-energy elasticity and how merely shifting the energy mix 

toward renewable sources (and, to a lesser extent, nuclear) would yield significant 

reductions in per capita emissions. 

Within the EU15 countries, Schmalenssen et al. (1998) called for research to explain 

why high-income countries, such as Germany, France, Sweden, Netherlands and the 

United Kingdom, have started to reduce per capita GHG emissions, while others in the 

same area, such as Spain, Portugal, Italy and Austria, have increased emissions over the 

same period. It is also worth noting how some Eastern European countries, such as the 

Czech Republic, Hungary, Poland and Slovakia, have reduced GHG emissions even 

more than the richest EU countries. Given these facts, the Environmental Kuznetz 

Curve (EKC) hypothesis is unable to explain the differences in emissions within EU27 

countries because Eastern economies, despite having a smaller per capita GDP, have 

reduced emissions more than Western, richer countries. Thus, we might look at 

environmental policy or at changes in fundamental economic and energy forces to find 

the reasons for these differences. This statement is in keeping with the work by 

Tahvonen and Salo (2001). From a theoretical point of view, these authors developed a 

neoclassical growth model with nonrenewable and renewable energy to address the 

issue of why emissions have increased in some countries but have decreased in others. 

They conclude that the relationship observed between CO2 emissions and income levels 

may follow even without environmental policy, hence economic - and energy - 

fundamental forces must be playing an important role in their reductions. From an 
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empirical point of view, we aim to characterize some of these fundamental forces which 

are generating the differences noted in GHG emissions within EU27 countries between 

1990 and 2006.  

Our empirical dynamic framework is along the lines of the estimating equations 

developed by Brock and Taylor (2004, 2005) and Álvarez et al. (2005). These authors 

adapt the neoclassical growth framework to a growth setting with emissions. As in 

Stokey (1998), they assume that emissions follow a by-product process. These authors 

derive an estimating dynamic panel data (DPD) equation for pollution directly from the 

theory, but they leave aside energy aspects. We extend these authors’ model and include 

energy aspects in a dynamic EKC framework. Hence, in addition to including the level 

of activity (measured by real GDP) and its possible inverted U-shaped relationship (a 

real GDP quadratic term), we also consider three energy aspects in our model: i) an 

aggregate energy effect, measured as the difference in total primary energy 

consumption per inhabitant; ii) an energy mix effect, measured as the difference in the 

shares of alternative energy sources (solid fuels, oil and petroleum products, gas, 

nuclear and renewables) with respect to primary energy consumption; iii) an energy 

sector effect, measured as the difference in the distribution of final energy consumption 

(industry, transport, households or services).  

In order to implement effective energy measures to abate GHG emissions, it is crucial to 

correctly estimate the relationship between emissions, energy and economic activity. 

However, traditional procedures for estimating panel data models (i.e., fixed or random 

effect methods) are well known to be unsuitable for estimating a DPD model. In this 

paper we use the one-step system GMM estimator [Arellano and Bover (1995) and 

Blundell and Bond (1998)], which should allow for endogeneity, measurement error and 
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omitted variable problems. In order to discuss the importance of considering this 

appropriate estimation method, we follow Blundell et al. (2000) to compare the one-step 

system GMM estimates with respect to alternative, more traditional methods, and we 

find important differences that may even change policy recommendations. There are 

few exceptions in the energy and emissions literature that seriously consider the 

weakness of traditional methods in estimating DPD models. For example, Halkos 

(2003) and Metcalf (2008) address the endogeneity problem, but use a first difference 

GMM estimator, which does not consider the weak instruments problem of this 

procedure when time series are persistent [Blundell and Bond (1998)], which is the case 

for aggregate emissions and energy time series. Huang et al. (2008), which revisits the 

causal relationship between energy consumption and GDP, is an exception that properly 

addresses both the endogeneity and the weak instruments problems and considers a 

system GMM approach.4 This paper also contributes methodologically to properly 

estimating dynamic pollution-energy models. 

The rest of the paper is organized as follows. The next section describes the data taken 

into account in the model analyzed. Section 3 presents the DPD model and describes the 

system GMM methodology. Section 4 shows the estimation results and some robustness 

analysis. The last section provides the main conclusions. 

2. EMISSIONS, ENERGY AND ECONOMICS IN THE EU27: AN OVERVIEW 

The goal of this paper is to characterize the effects of economic and energy variables on 

GHG emissions within the EU27 countries, with a special focus on energy mix 

variables. Data on GHG emissions are obtained from the European Environment 

                                                 
4 In the growth literature, Forbes (2000), Shioji (2001), Levine et al. (2000) and Bond et al. 

(2001), among others, use the system GMM estimator that we consider in this paper. 
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Agency (EEA) and are measured in thouthands of tons of CO2 equivalent. These data 

exclude land use and forestry. Energy consumption data are obtained from Eurostat, the 

official site for EU countries. Annual Energy and GHG emissions data cover from 1990 

to 2006. We take all EU27 members except Luxemburg, Cyprus and Malta. Series on 

real GDP and population are obtained from The Conference Board and Groningen 

Growth and Development Centre (2008). GDP series are expressed in market prices and 

in 1990 US dollars converted at "Geary-Khamis" purchasing power parities (PPPs). 

Population series represents midyear population (in thousands of persons), which are 

mostly derived from the International Data Base of the U.S. Census Bureau. 

Tables A1-A3 in the Appendix summarize data used in this work. They show 2006 

levels and annual growth rates from 1990 to 2006 for each variable and country 

considered in the sample. Table A1 shows GHG emissions, real GDP and primary 

consumption data expresed in per capita terms; Table A2 shows energy mix ratios of 

alternative energy sources, which are expressed as a percentage of primary energy 

consumption; Table A3 summarizes sectoral energy ratios, which are meassured as a 

percentage of final energy consumption.  

Between 1990 and 2006, per capita GHG emissions fell by 0.75% per year in the EU27 

(see Table A1). Note the heterogeneity present among different groups of countries. 

Based on 1990 per capita GDP levels, we denote the ten richest countries as EU10,5 all 

of them with a per capita GDP in excess of 16,000 $ US (1990 base), those countries 

which in 1990 had a per capita GDP of around 10,000$ US as EU4,6 and as EU EAST 

                                                 
5 This group of countries includes Belgium, Denmark, Germany, France, Italy, Austria, 

Netherlands, Finland, Sweden and the United Kingdom. 
6 These countries are Spain, Greece, Portugal and Ireland. Note that the case of Ireland is 

unique since in 1990 it was among those countries with an intermediate GDP, but had become one of 
the richest in the EU27 by 2006.   
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those countries of Eastern Europe, whose per capita GDP was approximately 6,000$ 

US.7 Figure 1 shows the relationship between GHG emissions and real GDP for these 

three groups of countries between 1990 and 2006.  

According to Table A1, in the EU10, with the exception of Italy, Finland and Austria, 

all reduced their per capita emissions. Of particular note are the United Kingdom and 

Germany, whose emissions dropped more than 1% per year. Emissions in the EU4 

countries, on the other hand, increased by as much as 1.8% per year in the cases of 

Spain and Portugal. Except for a few cases, the link that has existed until now between 

income and per capita emissions is in keeping with the EKC hypothesis, in which the 

relationship between income and emissions is given by an inverted-U (see the lines 

associated with the EU10 and EU4 in Graph 1). This relationship disappears, however, 

when we add the countries of Eastern Europe to the sample. In fact, if we only consider 

the year 1990, we see a ‘V’ relationship, and if we focus on 2006 it is essentially linear. 

Except for Slovakia, every country in the East reduced its per capita emissions to a 

greater extent even than those of the EU10, despite their per capita GDP levels being the 

lowest in the EU27. Emissions in Estonia, Latvia and Lithuania, for example, fell by 

almost 4% per year. The inaccuracy of the EKC hypothesis reveals the existence of 

other factors - energy or technological, for example - that might help to explain the 

change in emissions between 1990 and 2006 in Europe. 

FIGURE 1 ABOUT HERE 

In an attempt to reconcile the shortcomings of the EKC hypothesis in explaining the 

link between emissions and development, the literature on growth and convergence [i.e., 

                                                 
7 These countries are Bulgaria, the Czech Republic, Estonia, Latvia, Lithuania, Hungary, 

Poland, Romania, Slovenia and Slovakia. Cyprus and Malta are not included.  
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see Barro and Sala-i-Martín (1992)] has recently been applied to the topic of emissions.8 

Based on the fact that pollution is a by-product process [i.e., see Stokey (1998)] and 

using a neoclassical growth model extended to include pollution, these authors derive a 

dynamic equation that relates emissions growth to lagged emission levels, among other 

factors. Figure 2 represents the basic relationship of this model. It shows the scatter plot 

between emissions growth and emission levels in 1990. Its negative relationship 

suggests that countries with initial higher levels of emissions tend to reduce (increase) 

emissions more (less) than countries with lower initial levels. This finding gives some 

evidence in favor of absolute convergence within EU countries in terms of GHG 

emissions between 1990 and 2006.9 This theory also provides a partial explanation for 

the situation in some countries, such as Estonia or the Czech Republic, which had very 

high emission levels in 1990, and may explain a part of the substantial drop in their 

emissions despite having a small per capita GDP.  

FIGURE 2 ABOUT HERE 

This theory, however, falls well short of being complete, as evidenced by the fact that 

the countries are not perfectly aligned along the regression line. In fact, the dispersion is 

quite high - R2 is only 0.26 - and we see how countries with very different 

characteristics, such as the United Kingdom and Poland, are very close to each other, 

while other seemingly more similar countries, like Sweden and Finland, are far apart. It 

does not help us understand, for example, the cases of Latvia, Lithuania or Romania, 

whose drops in emissions are much greater than those associated with their 1990 levels. 

Nor does it help us understand the cases of Spain, Greece or Ireland, whose emission 
                                                 

8 See Brock and Taylor (2004, 2005) and Álvarez et al. (2005). 
9 Moreover, the estimate of -0.027 for the slope of the regression line indicates that the 

convergence speed is 2.7% a year, which is very close to the usual 2% convergence value for real GDP 
estimated by Barro and Sala-i-Matín (1992) and some other authors. 
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outputs are clearly above those associated with their 1990 levels. The poor economic 

growth experienced in Latvia, Lithuania and Romania on the one hand, and the high 

growth of Spain, Greece and Ireland on the other hand (Table A1), could explain these 

differences. Given this mixed evidence, there is a clear need to combine the 

convergence with the EKC theory. 

However, there are cases which cannot be explained even by combining these two 

theories. For example, let us compare the United Kingdom with Finland (see Figure 2). 

Both economies were at similar emission levels in 1990 and had comparable annual 

growth between 1990 and 2006 (Table A1). And yet the United Kingdom lowered its 

emissions to a much greater extent than Finland. The key to the differences between 

these two countries could lie in their energy use. While the economy of the United 

Kingdom grew at an annual rate of 2.1% while increasing its annual energy 

consumption by just 0.2%, Finland’s economy grew by 2% per year at the expense of a 

1.4% annual growth in energy consumption (see third group of columns in Table A1). 

The case of Spain is also noteworthy in this comparison, since its 2.2% annual growth 

was accompanied by a similar expansion in its energy usage, which has resulted in 

Spain being one of the most polluting countries in recent years. 

Our intention with these simple examples is to illustrate the pressing need to 

simultaneously consider economic, technological and energy aspects in emissions 

models. That is the main contribution of this paper, since most empirical research found 

in the literature relates emissions with GDP and technological variables. 

Changes in energy usage can also be explained by variations in the type of energy used 

or by changes in final energy consumers. So as to account for these two important 

aspects, in addition to that of aggregate energy use, we will also consider energy 
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consumption by type of primary energy source (solid fuels, oil and petroleum products, 

gas, nuclear and total renewables) and by type of end consumer (industry, transport, 

households, agriculture, services and others). 

As concerns the change in the primary energy mix (Table A2), the overriding trend in 

the EU27 has been for a reduction in the amount of energy derived from solid fuels and, 

to a lesser extent, petroleum products. These drops have been offset by a notable 

increase in the importance of gas, renewable energies and, on a smaller scale, nuclear. 

For the EU27 as a whole, coal usage has fallen by 0.6 percentage points (p.p.) a year, 

that of petroleum products by just 0.1 p.p., that of gas has grown by 0.4 p.p., of nuclear 

by 0.1 p.p. and of renewable energy sources by 0.2 p.p. Despite these changes, 

renewable sources still account for the smallest share, at 7.1% in 2006, versus 14% for 

nuclear, 24% for gas, 37% for petroleum and 18% for solid fuels. 

As concerns the distribution by type of end users, industry, transport and households 

account for almost 85% of final energy consumption in the EU27. The first two 

represent almost 30% each, while the third amounts to around 25%. The change in these 

ratios has been fairly stable among EU15 countries, though significant changes have 

taken place among the countries in the East. With the exception of Ireland, industry’s 

share of energy consumption has decreased at an annual rate of 0.4% for the EU27. 

These drops have been particularly significant for the countries of the East, where 

industry has undergone a considerable renovation. Transportation has also played an 

increasing role in most economies. In the EU27, its energy consumption quota has 

increased by slightly over 0.3 p.p. a year. These changes have been driven by the 

countries of the East, although their 1990 levels were clearly below those of the most 

advanced European countries. Household energy usage has grown by almost 0.1 p.p. a 
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year in the EU27. While no clear pattern exists for this ratio in the EU15, it has grown 

in most Eastern countries.  

In the next section we present a Dynamic Panel Data model that relates GHG emissions 

with economic and energy aspects. 

 

3. A DYNAMIC PANEL DATA MODEL OF POLLUTION EMISSIONS 

In this section, we present a dynamic panel data (DPD) model for pollution emissions 

for estimation by system GMM. Brock and Taylor (2004, 2005) and Álvarez et al. 

(2005) derive an estimating dynamic equation directly from an extended neoclassical 

growth model with pollution. They estimate a model that relates current emissions 

growth with lagged emissions levels and economic factors. We build on their equations 

so as to propose the following DPD model that relates pollution, growth and including 

also energy variables: 
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The pit variable is the log of per capita GHG emissions; its lagged level controls for 

short-term dynamics and conditional convergence;10 yit is the log of per capita real GDP 

and its quadratic term controls for its possible inverted U-shaped relationship with 

emissions (the EKC hypothesis). Remained variables capture alternative energy factors. 

The eit term is the log of per capita primary energy consumption, which meassures an 

                                                 
10 In the case of GHG emissions, testing the conditional convergence hypothesis within EU 

countries is of special interest because these countries share common environmental policies and 
targets. 
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aggregate energy use effect. The mjit variables show the ratios with respect to primary 

energy consumption of oil and petroleum products, total gas, nuclear energy and total 

renewable energy, respectively, which capture differences in the energy mix. The 

ommited energy source is the solid fuel, thus remaining energy mix coefficients are 

referred to the solid fuel ratio. The skit variables show the shares of final energy 

consumption of main consumers (the industry sector, the transport sector and the 

households), which capture an energy composition effect. The ommited sectors are the 

agriculture and the services, which represent less than 15% of total final energy 

consumption. Thus, the industry, transport and households coefficients are referred to 

the coefficients of these less energy intensive sectors.  

Since all these economic and energy variables may affect emissions 

contemporaneously, it makes sense that they enter in equation (1) dated at period t. 

Hence, regressors are endogenous, which must be taken into account in order to 

determine the set of valid instruments in the system GMM approach. We follow 

Blundell et al. (2000) to handle this issue.11  Equation (1) can be rewritten more 

compactly as 

ittitittiit Xpp εβξα +Ω+++= −
'

1 ,      (1)’ 

where X groups all endogenous regressors and Ω is a vector of their associated 

parameters. 

The country-specific terms αi capture all fixed factors inherent to each country, which 

are either not considered in the model, such as geographical, social and local policy 

country aspects, or not directly observer, such as the initial pollution technology. From 

                                                 
11 See the technical appendix for more details about this point. 
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a theoretical point of view, most of these fixed factors are expected to be heterogeneous 

within countries and correlated with, at least, each country’s initial level of emissions. 

Hence, from an empirical point of view, to assume away those fixed differences would 

lead to biased estimates.12 ξt is a period-specific constant, which captures productivity, 

regulatory or economic changes that are common to all countries. Finally, εi,t 

encompasses effects of a random nature and not considered in the model, which are 

assumed to have the standard error component structure in DPD models [Arellano and 

Bond (1991), Arellano and Bover (1995) and Bundell and Bond (1998)], 

A1) [ ] [ ] [ ] tsandNtNiEEE isititiit ≠===== ,...,1;,...,1,0;0;0 εεεαε . 

A2) [ ] TtandNiforyE iti ,...,2,...,1,01 ===ε . 

The interpretation of equation (1) and (1)’ depend on the level of β. A β smaller than 

one is consistent with conditional convergence, which means that countries relatively 

close to their steady-state per capita emissions levels will experience a slowndown in 

their emissions growth. In this case, αi and all explanatory variables affect to the steady-

state the emissions of country i is converging to. On the other hand, if β is greater than 

one, there is no convergence effect and αi and all regressors would meassure differences 

in steady-state emissions growth rates. Estimated β will be lower that one in all cases, 

hence we will focus on the conditional convergence interpretation.  

Traditional procedures for estimating a panel data model like (1) (i.e., fixed or random 

effects methods) are known to be unsuitable [Anderson and Hsiao (1982); Hsiao 

(1986)]. Holtz-Eakin et al. (1988) and Arellano and Bond (1991) propose an alternative 
                                                 

12 Fixed effects would be omitted in a standard OLS pool regression, resulting in bias 
estimates. In this situation, it is well known that OLS β estimates is downward bias. See Anderson and 
Hsiao (1992) and Hsiao (1986) for more details about this point. 
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approach, where first differences in the regression equation are taken to remove 

unobserved time-invariant country specific effects and then particular moment 

conditions for lagged variables are exploited to find a set of instruments and construct a 

GMM-based estimator.13 Their GMM approach (GMM-DIF) allows us to handle 

endogeneity, measurement errors and omitted variables problems. However, the GMM-

DIF approach shows important bias problems when variables are persistent, which is the 

case of emissions, economic and energy macroeconomic variables. Under these 

circumstances, the instruments used in the GMM-DIF estimator have proven to be weak 

and the first difference estimator is poorly behaved. Arellano and Bover (1995) and 

Blundell and Bond (1998) propose an alternative GMM procedure which might 

overcome the weak instruments problem. This procedure estimates a system of 

equations in both first-differences and levels, where the instruments in the level 

equations are lagged first differences of the variables. In this paper we use the system 

GMM estimator (GMM-SYS) in its one-step version. In contrast to the two-step 

version, the one-step GMM estimator has standard errors that are asymptotically robust 

to heteroskedasticity and have been found to be more reliable for finite sample 

inference.14 

 

4. RESULTS 

The estimation approach consists of the one-step GMM estimator proposed by Arellano 

and Bover (1995) and developed by Blundell and Bond (1998). All variables are taken 

as deviations from period means so that we do not need to include time-specific 
                                                 

13 See the technical appendix for more details on this point. 
14 See Blundell and Bond (1998), Blundell et al. (2000), Windmeijer (2005) and Bond (2002), 

among others. 
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constants and can omit the ξ term from equation (1)’. GMM results are shown for the 

one-step estimator case, with heteroskedasticity-consistent asymptotic standard errors 

reported.15 

The most frequently used tests to validate the assumptions underlying GMM methods 

are the m1, m2 and Sargan tests. If the disturbance εit in (1)’ is not serially correlated, 

there should be evidence of negative first order serial correlation and no evidence of 

second order serial correlation in first difference residuals, εit-εit-1. The absence of serial 

correlation in these errors is also an indication that business cycle effects are not biasing 

our results in a significant way [Caselli et al. (1997)]. The m1 and m2 tests are based on 

the standardized average residuals autocovariance, which are asymptotically N(0,1) 

distributed under the null hypothesis of no autocorrelation. The Sargan test, in contrast, 

is distributed chi-squared with degrees of freedom equal to the number of moment 

restrictions minus the number of parameters estimated under the null hypothesis that 

moment conditions are valid. However, the Sargan test is less meaningful since it 

requires that the error terms be independently and identically distributed, which is not 

expected in our case. Hence, we will pay basically attention to the m1 and m2 tests. 

Specifically, as Arellano (2002) suggests, we include some lagged terms of regressors 

in (1) in order to improve the specification of the DPD model. In all models estimated, 

including one lagged term for the energy and the income variables is enough to pass the 

m1 and the m2 specification tests.  

                                                 
15 For a given cross-sectional sample size, the use of too many instruments in models with 

endogenous regressors may result in seriously biased estimates (Álvarez and Arellano (2003)). Hence, 
even when computing speed is not an issue, these authors recommend not using the entire series history 
as instruments. We include instruments up to t-3. Including more instruments does not change results 
significantly.  
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We first find evidence supporting the good properties of the system GMM estimates. 

Following Blundell et al. (2000), Table 1 compares the results of alternative methods: 

the OLS pooling estimates (OLS-POOL), the Within Group estimates (WG), the GMM-

DIF and the GMM-SYS. Associated with each parameter, the p-value of the t-test is 

shown. We show standard specification tests for each model. First, notice that the 

Haussman test rejects the null hypothesis of random effects at any standard level of 

significance. For any GMM estimate, we show the m1 and the m2 tests and conclude 

that moment conditions underlying GMM estimates seem to be robustly supported. 

INSERT TABLE 1 ABOUT HERE 

In the presence of country-specific effects, OLS seems to give an upward-biased 

estimate of the β coefficient in (1)’, while WG appears to give a downwards-biased 

estimate of this coefficient. Using GMM-DIF, the β coefficient is barely higher than the 

WG estimates, suggesting the possibility of important finite sample bias due to the weak 

instruments problem. This comparison also highlights that the estimated coefficients of 

the GDP and energy regressors, which are of our main interest, differ significantly 

among the alternative procedures. Hence, using a method resulting in bias estimates (the 

WG or the GMM-DIF) will lead to misleading conclusions. For example, energy sector 

share coefficients are not significant under the WG and the GMM-DIF methods, while 

they are significant under GMM-SYS. Moreover, they are of opposite signs. Misleading 

conclusions would say that sector energy composition has no significant effect on GHG 

emissions. As another example, the EKC hypothesis is not rejected under WG and 

GMM-DIF, while it is rejected at standard levels of significance under GMM-SYS. 

Regarding the primary energy mix regressors, they are negative in all cases and under 

all methods. Recall that these coefficients are all expressed in terms of the Solid Fuel 
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ratio. WG estimates indicate that nuclear energy is the most significant source for 

reducing GHG emissions, while renewables are in second position, with petroleum and 

gas also playing an important role in reducing emissions. Coefficients under GMM-SYS 

are, first of all, notably smaller than those estimated under WG and GMM-DIF 

estimates and, secondly, now the coefficient associated with renewables is the highest 

one, followed by that for nuclear, while those for gas and petroleum products are similar 

and almost negligible.  

In summary, this comparison suggests that the WG estimates are severely biased, that 

there exists a problem with weak instruments and hence the GMM-DIF is also biased in 

the WG direction and that the GMM-SYS approach seems to be a convenient way to 

overcome the weak instrument problem. Hence, we will focus our attention on GMM-

SYS estimates from now on.  

We want to distinguish our results between alternative areas in the EU27: the EU10, the 

EU14 (all EU10 countries together with Spain, Portugal, Greece and Ireland) 16  and the 

EU East. In addition, we want to show the differences in the results when considering 

the pre-Kyoto (1990-1997) and the post-Kyoto (1998-2006) period. For each area and 

time period, we estimate a model like (1)’ by one-step system GMM. Results are shown 

in Tables 2(a)-2(d) for the EU27, EU10, EU14 and EU East, respectively, for the 1990-

2006, the 1990-1997 and the 1998-2006 period. As shown in the tables, the m1 test 

supports a negative and significant first order correlation of the first difference 

residuals, while the m2 test rejects the existence of second order correlation. A joint 

interpretation of these tests does not reject the hypothesis that the level disturbances are 

serially uncorrelated, hence GMM assumptions are satisfied. The p-value for the Sargan 

                                                 
16 We do not consider the EU4 group alone because of the small dimension of the panel.  
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test is always very close to one, but this test is less reliable in our framework, as 

commented above. 

INSERT TABLES 2(a)-2(d) ABOUT HERE 

Most noteworthy in the results is that parameter β in (1)’ is always significantly less 

than 1. The convergence parameter is given by β-1, hence there is evidence for the 

conditional convergence of GHG emissions for the EU27 countries for the time period 

in question. Whether we consider the EU27, or just the EU14 or EU10, the estimate for 

β-1 is approximately -0.1, independently of the period considered. This estimate 

represents a reduction in the differences in emissions for the EU27 countries of about 

10% a year, as determined by the steady state for each country. If we consider only the 

countries of the East, the estimate for β-1 is around -0.5, which represents a conditioned 

convergence process for the emissions within Eastern European countries that is far 

above the convergence between the most developed countries and those in Eastern 

Europe. 

Secondly, we note the minimal or zero evidence for the EKC hypothesis in the EU for 

the time period in question. This fact concurs with the evidence discussed in Section 2. 

In general, both the GDP coefficient and its square term are either very close to zero or 

negligible. This evidence, then, indicates that the differences in emissions observed 

among European countries are basically due to energy, technological or regulatory 

aspects. This paper focuses on the energy aspects, distinguishing between aggregate 

factors, differences in the primary energy mix and differences in the distribution of the 

end consumer. 
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The elasticity associated with aggregate primary energy consumption is significantly 

higher than zero but less than one in every case analyzed. The differences in aggregate 

energy consumption, then, would explain a great deal, but not all, of the differences 

present in emission levels. For the EU27, and even if only the EU10 or EU14 are 

considered, this elasticity is around 0.8 and 0.9 and does not change over the time 

periods analyzed. As for the countries of the East, this elasticity, which was near 0.9 in 

the pre-Kyoto period, fell to almost 0.6 afterward. The important changes in production 

processes, technology and energy usage seen by these economies in recent years might 

have resulted in drastically reduced emissions and would explain the smaller elasticity. 

According to our estimates, in addition to aggregate energy consumption, differences in 

the primary energy mix also play an important role in explaining the variations in 

emissions among EU countries. Recall that the energy type omitted from the regression 

was coal, meaning the estimated coefficients for the other energy sources are in 

reference to this source. The estimated coefficients are negative for every case, which 

would indicate that a change in the coal energy mix toward any other alternative energy 

source would favor a reduction in emissions. A comparison of the coefficients for the 

various energy sources would indicate how the increased use of a particular energy 

source is most beneficial for the environment: the more negative the coefficient, the 

greater the positive effect on emissions of a one percentage point change in the mix.17  

Various points stand out in this regard. First, the lower coefficient is usually associated 

with renewables, followed by nuclear and lastly by natural gas and petroleum, which all 

have very similar coefficients. In the majority of cases, the magnitude of the coefficient 

                                                 
17 The increase in the energy mix of a certain source of energy could be due to a greater use of 

said energy type in existing economic sectors or to a change in the production structure, where the new 
sectors demand one source of energy use over another. Regardless of the reason, all that matters to our 
model is the resulting shift in the energy mix.  
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for renewables is almost double that for gas or petroleum. For the countries of the East, 

the energy mix coefficients are almost unchanged when comparing estimates for the 

pre- and post-Kyoto periods. For the most advanced countries, however, whether 

considered as the EU10 or EU14, significant changes are evident. For the four energy 

types in question, the estimated coefficients for the post-Kyoto period are considerably 

more negative than for pre-Kyoto. Given that the coefficient associated with aggregate 

energy consumption was almost unchanged for this group of countries, these results 

point to significant advances in the efficiency and/or use of these energy sources in 

recent years which has made them less polluting. 

Lastly, let us consider the effects the changes in the final energy distribution have on 

emissions. Recall that the variable omitted was from the services and farm sector, 

meaning the estimated coefficients are in reference to those sectors.18 Although the 

changes in these ratios were not as significant as those in the primary energy mix for the 

period in question, certain results still merit consideration.  

Let us first focus on the term associated with transport, whose final consumption has 

grown the most in the EU and which is currently the most important in the EU14 

countries (see Table A3). The transportation sector has undergone two very important 

changes in recent years, which could have offsetting effects on emissions. On the one 

hand, technological and regulatory advances have resulted in improved emissions data 

for this sector. On the other, the higher degree of mobility induced by economic 

development and derived from technological improvements (the rebound effect) have 

the opposite effect. For the entire set of EU27 countries, the coefficient associated with 

                                                 
18 As noted for the primary energy mix, a change in these ratios could be due to a change in 

the energy usage of existing sectors or to a sector shift within the economy. These differences are not 
considered in this paper either. All that matters to our model is the shift that has taken place in the 
distribution of final energy consumers.  
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the transportation sector is, in general, small and negligible. If analyzed by groups, 

however, we note, on the one hand, a significantly negative coefficient for the EU10 

and EU14 countries for the post-Kyoto period, indicative of improved technology and 

regulation in the sector during this period and their favorable effect on emissions despite 

its increased contribution to energy consumption; and, on the other, the estimate is 

positive and significant for the countries of the East for both the pre- and post-Kyoto 

periods, which implies that advances in technology and regulation have not offset the 

increased mobility resulting from greater developments in the field. In the EU14, the 

relevant coefficient for the pre-Kyoto period is negligible. 

The coefficient associated with industry is not significant for the EU27 as a whole or for 

the EU10 or EU14. It is significant and positive, though smaller than that associated 

with transportation, for the countries of the East. Among the most developed countries, 

industry is shifting toward a greater use of technology and less energy consumption and 

emissions, which has brought its emissions on a par with those of the service sector in 

many cases. In Eastern Europe, despite the rapid renewal of industry, it has not reached 

the level of the most advanced countries. This change is apparent in that the industry 

coefficient for the post-Kyoto period is smaller and closer to zero than the associated 

pre-Kyoto coefficient. 

Lastly, we note that the coefficient associated with final consumption by household is 

not significant in most cases, save for the most developed countries in the post-Kyoto 

period, in which it is negative, though smaller than for the transportation sector. For this 

time period, regulatory measures aimed at more rational energy usage, weather-sealing 

improvements in construction that favor reduced household energy consumption, and 

 21



technological advances in appliances and lighting are all allowing for more sustainable 

growth in terms of emissions. 

 

FINAL REMARKS 

This paper has proposed and estimated a panel dynamic model for EU27, for the 1990 

and 2006 period, that relates GHG emissions with real GDP, aggregate energy 

consumption, the primary energy mix and the energy distribution for end consumers. 

This paper’s main contributions have been two-fold. The first is the use of a dynamic 

panel to simultaneously assess the EU27 in terms of emissions, growth and energy. The 

second is methodological, since the most generalized procedures for estimating in this 

type of literature tend to exhibit endogeneity problems and biased estimates for finite 

samples. We use in this paper the system GMM approach proposed by Arellano and 

Bond (1995) and Blundell and Bond (1998), which has been shown to solve many of 

the problems that arise in traditional procedures. From a methodological standpoint, our 

results prove the relevance of considering a suitable estimation method, since we found 

notable differences when comparing the findings provided by alternative, less reliable 

methods.  

The main findings of this paper are summarized as follows. First, our results indicate 

that between 1990 and 2006, there is clear evidence for the existence of conditional 

convergence in terms of GHG emissions among the EU27 countries. These symptoms 

are robust when different sub-groups of countries and time periods are considered. In 

this regard, no notable differences were detected between the pre-Kyoto (1990-1997) 

and the post-Kyoto (1998-2006) periods. 
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Secondly, we found no evidence in favor of the EKC hypothesis over the course of this 

same time period for the EU27 countries. This fact is due, in part, to the transition 

experienced by the countries of the East in recent years and which has resulted in a 

drastic reduction in their emissions, despite being countries with per capita GDP levels 

markedly lower than those of the Western European economies. Nevertheless, when 

only the most developed countries are considered (EU15), the EKC hypothesis also 

fails. Hence, our results indicate that once emissions by energy and convergence factor 

are taken into account, there is no evidence for the existence of an inverted-U 

relationship in Europe between emissions and real GDP. 

The third relevant result involves the relationship between total energy and emissions. 

The elasticity between aggregate energy consumption and emissions is significantly 

greater than zero, but also below unity. This indicates that a 20% reduction in energy 

consumption (as suggested by the 20/20/20 plan) would not be sufficient to achieve the 

20% emissions reduction goal. An additional boost in efficiency or a shift in the energy 

mix toward less polluting energies would be required to achieve the emissions goal, 

which is the ultimate objective.  

Fourth, our findings highlight how merely shifting the energy mix toward renewable 

sources (and, to a lesser extent, nuclear) would yield significant reductions in per capita 

emissions. Technological advances that may be occurring in the usage and consumption 

processes for the natural gas and petroleum products still seem to be small with respect 

to solid fuels. 

As for the energy consumption distribution of end users, our results emphasize the 

positive effect of the industrial, transportation and residential sectors in the most 

developed countries. The transformation of industry and its efficiency gains in many 
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European countries, along with technological advances in the transportation and 

residential sectors, appear to favor a reduction in emissions. The evidence is not as clear 

in Europe’s less developed countries, which must still make a substantial effort to 

improve in this area. 

Although the EU seems to be progressing in the right direction, it is still far from 

achieving its goals for 2020. What is more, reducing energy use will not be enough. It is 

necessary to continue with industrial renovation and with technological advances in the 

transportation and residential sectors, combined with measures to reduce mobility via 

private transportation as well as our dependence on petroleum, coal and natural gas and 

shift toward less polluting energies. 

As a final caveat, our findings indicate that a smooth transition from a nonrenewable to 

a renewable energy system is yielding reduced GHG emissions within the EU15 

economies. This important result highlights the need to promote research on the 

economic political mechanisms behind a possible change in the energy system, and on 

how to accelerate this process. 
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Table 1. Alternative estimates of DPD emissions model for EU27 

estimates p-value estimates p-value estimates p-value estimates p-value
Lag of emissions 0.930 0.000 0.422 0.000 0.377 0.000 0.821 0.000

GDP 0.103 0.044 0.304 0.000 0.321 0.001 0.146 0.213

Lag of GDP -0.120 0.010 0.031 0.465 0.014 0.830 -0.110 0.328

GDP2 0.004 0.472 -0.075 0.000 -0.078 0.000 -0.005 0.588

Energy Consumption 0.829 0.000 0.875 0.000 0.839 0.000 0.770 0.000

Lag of Energy -0.784 0.000 -0.335 0.000 -0.259 0.001 -0.653 0.000

Petroleum mix -0.022 0.405 -0.313 0.000 -0.315 0.000 -0.104 0.063

Gas mix -0.053 0.009 -0.224 0.000 -0.177 0.028 -0.082 0.016

Nuclear mix -0.105 0.000 -0.745 0.000 -0.754 0.000 -0.261 0.001

Renewables mix -0.130 0.000 -0.616 0.000 -0.602 0.000 -0.315 0.000

Industry share 0.046 0.233 -0.119 0.087 -0.058 0.480 0.172 0.036

Transport share 0.064 0.242 -0.057 0.538 0.028 0.793 0.198 0.082

Households share 0.024 0.617 -0.113 0.106 -0.098 0.206 0.111 0.155

R2 0.993 -- 0.948 -- -- -- -- --

Hausman, random 
effect test

-- -- 268.650 0.000 -- -- -- --

m1-test -- -- -- -- -3.846 0.000 -6.283 0.000

m2-test -- -- -- -- 0.326 0.744 0.197 0.844

OLS-POOL WG-Fixed effects GMM1-DIF GMM1-SYS

 

Note: ‘WG’ is Within Groups estimation, OLS-POOL is OLS applied to the entire pool of data. For GMM 
estimates, we take as instruments the lagged levels of y and the endogenous regressors dated t-2 and 
earlier. We use the lagged difference of y and all regressors dated t-1 as additional instruments in the 
system GMM estimation. For the GMM-DIF and GMM-SYS we report its one-step estimation. The null 
of the Haussman test is the existence of random effects. The null of the m1 and m2 test is the absence of 
first- and second-order serial correlation of first-difference residuals. The inclusion of a lagged energy 
consumption and GDP term is required to pass the m1 and m2 test. The number of cross sections is 24 
(all EU27 countries except Luxembourg, Malta and Cyprus) and the number of time periods is 17 (1990-
2006). 
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Table 2(a). System GMM estimates of DPD emissions model for EU27 

estimates p-value estimates p-value estimates p-value
Lag of emissions 0.821 0.000 0.821 0.000 0.825 0.000

GDP 0.146 0.213 0.269 0.095 -0.135 0.302

Lag of GDP -0.110 0.328 -0.329 0.037 0.073 0.401

GDP2 -0.005 0.588 0.012 0.473 0.020 0.073

Energy Consumption 0.770 0.000 0.683 0.000 0.914 0.000

Lag of Energy -0.653 0.000 -0.555 0.000 -0.792 0.000

Petroleum mix -0.104 0.063 -0.059 0.282 -0.082 0.394

Gas mix -0.082 0.016 -0.122 0.019 -0.082 0.131

Nuclear mix -0.261 0.001 -0.277 0.000 -0.251 0.005

Renewables mix -0.315 0.000 -0.331 0.000 -0.350 0.016

Industry share 0.172 0.036 0.030 0.781 0.156 0.098

Transport share 0.198 0.082 0.051 0.689 0.090 0.545

Households share 0.111 0.155 -0.067 0.584 0.104 0.331

m1-test -6.283 0.000 -5.691 0.000 -4.158 0.000

m2-test 0.197 0.844 -1.896 0.058 0.513 0.608

EU27, 1990-2006 EU27, 1997-2006 EU27, 1990-1997

 

Note: The null of the m1 and m2 test is the absence of first- and second-order serial correlation between 
regressors and residuals, respectively. GMM results are for the one-step estimator case, with 
heteroskedasticity-consistent asymptotic standard errors reported. Variables are taken as deviations from 
period means.  
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Table 2(b). System GMM estimates of DPD emissions model for EU10 

estimates p-value estimates p-value estimates p-value
Lag of emissions 0.829 0.000 0.794 0.000 0.833 0.000

GDP 0.045 0.837 -0.208 0.371 -0.386 0.429

Lag of GDP 0.299 0.128 0.274 0.218 0.152 0.377

GDP2 -0.059 0.008 0.015 0.753 0.063 0.457

Energy Consumption 0.904 0.000 0.883 0.000 0.878 0.000

Lag of Energy -0.850 0.000 -0.909 0.000 -0.801 0.000

Petroleum mix -0.273 0.033 -0.467 0.015 -0.301 0.060

Gas mix -0.194 0.009 -0.499 0.002 -0.142 0.041

Nuclear mix -0.312 0.007 -0.499 0.006 -0.304 0.007

Renewables mix -0.350 0.001 -0.732 0.002 -0.303 0.049

Industry share -0.027 0.749 0.050 0.517 0.210 0.263

Transport share -0.207 0.267 -0.391 0.009 0.057 0.889

Households share -0.006 0.960 -0.198 0.085 0.080 0.683

m1-test -5.024 0.000 -4.199 0.001 -5.625 0.080

m2-test 0.508 0.611 0.563 0.574 0.040 0.968

UE10, 1990-2006 UE10, 1997-2006 UE10, 1990-1997

 

Note: the UE10 area includes Belgium, Denmark, Germany, France, Italy, Austria, The Netherlands, 
Finland, Sweden and United Kingdom. See Note in Table (2a). 
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Table 2(c). System GMM estimates of DPD emissions model for EU14 

estimates p-value estimates p-value estimates p-value
Lag of emissions 0.902 0.000 0.835 0.000 0.921 0.000

GDP 0.093 0.555 -0.009 0.964 0.225 0.577

Lag of GDP 0.025 0.881 -0.114 0.548 0.057 0.726

GDP2 -0.021 0.120 0.051 0.010 -0.058 0.331

Energy Consumption 0.914 0.000 0.810 0.000 0.908 0.000

Lag of Energy -0.853 0.000 -0.836 0.000 -0.837 0.000

Petroleum mix -0.105 0.039 -0.365 0.001 -0.045 0.525

Gas mix -0.136 0.000 -0.499 0.000 -0.061 0.147

Nuclear mix -0.218 0.001 -0.457 0.000 -0.163 0.000

Renewables mix -0.199 0.000 -0.684 0.000 -0.089 0.409

Industry share -0.048 0.309 0.012 0.799 -0.061 0.576

Transport share -0.032 0.770 -0.308 0.012 -0.056 0.802

Households share -0.004 0.960 -0.241 0.017 0.026 0.818

m1-test -5.854 0.000 -5.903 0.000 -4.158 0.000

m2-test 1.433 0.152 0.655 0.513 0.513 0.608

UE14, 1990-2006 UE14, 1997-2006 UE14, 1990-1997

 

Note: the EU14 area includes EU10 and Spain, Greece, Portugal and Ireland. See Note in Table (2a). 
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Table 2(d). System GMM estimates of DPD emissions model for EU East 

estimates p-value estimates p-value estimates p-value
Lag of emissions 0.539 0.000 0.529 0.000 0.507 0.000

GDP 0.026 0.727 0.123 0.425 -0.246 0.018

Lag of GDP -0.006 0.919 -0.198 0.116 0.144 0.008

GDP2 -0.013 0.197 0.004 0.684 0.016 0.408

Energy Consumption 0.697 0.000 0.598 0.000 0.892 0.000

Lag of Energy -0.356 0.000 -0.241 0.000 -0.460 0.000

Petroleum mix -0.243 0.000 -0.310 0.006 -0.165 0.058

Gas mix -0.252 0.000 -0.260 0.000 -0.279 0.000

Nuclear mix -0.587 0.000 -0.611 0.000 -0.603 0.000

Renewables mix -0.691 0.000 -0.706 0.000 -0.729 0.000

Industry share 0.277 0.000 0.163 0.167 0.290 0.007

Transport share 0.645 0.000 0.681 0.000 0.446 0.000

Households share 0.007 0.871 -0.176 0.118 0.110 0.288

m1-test -3.665 0.000 -3.284 0.001 -1.751 0.080

m2-test -1.179 0.239 -1.498 0.134 0.370 0.711

UE EAST, 1990-2006 UE EAST, 1997-2006 UE EAST, 1990-1997

 

Note: The UE East area includes Bulgaria, Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, 
Romania, Slovenia and Slovakia. See Note in Table (2a). 
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GRAPHICAL APPENDIX 

Figure 1. EKC within European areas: GDP and GHG Emissions relationship
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DATA APPENDIX. GHG Emissions, Energy and Macroeconomic data for EU27 

 
Table A1. Emissions, level of activity and total energy consumption (data are expressed 
in per capita terms) 

2006
90-06 anual 
growth, % 2006

90-06 anual 
growth, % 2006

90-06 anual 
growth, %

BEL 13.2 -0.59 22.7 1.74 5.8 1.11
DEN 12.9 -0.23 24.9 1.87 3.8 0.61
GER 12.2 -1.49 20.0 1.27 4.2 -0.36
FRA 8.8 -0.78 22.4 1.35 4.4 0.61
ITA 9.8 0.44 19.8 1.22 3.2 1.05
NET 12.6 -0.74 23.6 1.95 4.9 0.45
AUS 11.1 0.51 22.7 1.86 4.2 1.51
FIN 15.3 0.47 23.2 1.99 7.2 1.35
SWE 7.3 -0.87 24.2 1.99 5.6 0.17
UKI 10.8 -1.35 23.0 2.11 3.8 0.19
IRE 17.2 0.51 27.8 5.35 3.8 1.68
GRE 12.5 1.17 15.4 2.70 2.9 1.81
SPA 9.7 1.79 17.1 2.20 3.2 2.18
POR 7.8 1.72 14.3 1.72 2.4 1.89
BUL 9.7 -1.91 7.8 2.07 2.8 -0.77
CZR 14.5 -1.65 11.8 1.74 4.5 -0.32
EST 14.3 -3.88 20.8 4.07 4.1 -2.72
LAT 5.1 -4.16 13.6 1.95 2.0 -2.38
LIT 6.5 -4.53 10.4 1.12 2.4 -3.84
HUN 7.9 -1.15 9.3 2.28 2.8 0.04
POL 10.4 -0.85 9.1 3.58 2.5 -0.18
ROM 7.0 -2.71 4.3 1.29 1.8 -2.62
SLO 10.2 0.58 16.5 2.62 3.7 1.72
SLK 9.0 -2.77 11.0 2.20 3.5 -0.88
EU27 10.5 -0.76 18.3 1.83 3.7 0.33

GHG Emissions Real GDP Primary energy 

 
 
Table A.2. Primary energy consumption mix by energy sources (% of total primary 
energy consumption) 
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2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, %

BEL 8.5 -0.78 39.2 0.07 24.8 0.50 19.9 -0.13 2.9 0.10
DEN 26.2 -0.49 39.4 -0.40 21.7 0.72 0.0 0.00 15.6 0.55
GER 23.6 -0.83 35.7 0.02 22.8 0.46 12.4 0.11 6.0 0.28
FRA 4.8 -0.24 33.8 -0.31 14.5 0.19 42.5 0.43 6.3 -0.05
ITA 9.0 -0.04 44.7 -0.88 37.2 0.74 0.0 0.00 7.0 0.18
NET 9.8 -0.23 40.6 0.21 42.6 -0.17 1.1 -0.01 3.6 0.14
AUS 11.7 -0.27 42.3 -0.04 21.9 0.08 0.0 0.00 21.4 0.09
FIN 19.7 0.08 29.0 -0.34 10.2 0.15 15.6 -0.10 22.7 0.23
SWE 5.3 -0.02 28.7 -0.14 1.7 0.03 34.0 -0.23 29.1 0.27
UKI 18.0 -0.78 35.8 -0.16 35.3 0.81 8.5 0.04 1.9 0.09
IRE 15.7 -1.10 54.8 0.50 25.9 0.47 0.0 0.00 2.7 0.07
GRE 26.6 -0.60 57.8 -0.01 8.7 0.51 0.0 0.00 5.7 0.05
SPA 12.4 -0.54 48.9 -0.14 21.6 1.00 10.8 -0.28 6.6 -0.03
POR 13.1 -0.11 53.6 -0.80 14.4 0.90 0.0 0.00 17.0 -0.11
BUL 33.9 0.17 24.9 -0.59 14.1 -0.32 24.5 0.68 5.5 0.31
CZR 45.2 -1.18 21.7 0.21 16.4 0.35 14.5 0.49 4.3 0.25
EST 56.1 -0.25 20.4 -0.54 14.9 0.16 0.0 0.00 9.8 0.32
LAT 1.9 -0.44 32.0 -0.75 30.4 0.03 0.0 0.00 31.0 1.11
LIT 3.3 -0.11 32.3 -0.67 29.1 0.00 26.5 -0.06 9.3 0.46
HUN 11.2 -0.60 28.2 -0.15 41.3 0.64 12.5 0.01 4.6 0.17
POL 58.0 -1.08 24.7 0.70 12.6 0.23 0.0 0.00 5.1 0.22
ROM 23.2 0.24 26.5 -0.22 35.7 -0.60 3.6 0.22 11.7 0.48
SLO 21.3 -0.53 36.2 0.28 12.2 -0.10 19.5 -0.13 10.5 0.37
SLK 23.6 -0.84 19.5 -0.04 28.6 0.27 24.7 0.62 4.6 0.19
EU27 17.8 -0.59 36.9 -0.07 24.0 0.39 14.0 0.11 7.1 0.17

Total Renewables Oil and Petroleum 
products 

Solid Fuels Total Gas Nuclear 

 
 
Table A.3. Final energy consumption shares by type of consumers (% of final energy 
consumption) 

2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, % 2006

90-06 
anual p.p. 
change, %

BEL 37.8 -0.09 25.2 0.07 23.4 -0.17 1.9 0.02 11.7 0.17
DEN 18.7 -0.09 34.2 0.28 28.3 -0.06 5.8 -0.15 13.1 0.02
GER 24.9 -0.41 28.4 0.16 31.0 0.33 1.2 -0.01 14.5 -0.07
FRA 22.2 -0.28 32.2 0.09 28.3 0.10 2.0 -0.02 15.2 0.12
ITA 29.1 -0.29 33.8 0.16 22.9 -0.10 2.6 -0.02 11.6 0.25
NET 26.4 -0.18 30.7 0.41 19.7 -0.22 7.8 -0.01 15.4 -0.01
AUS 32.7 -0.04 28.6 0.30 24.8 -0.35 2.2 -0.08 11.7 0.16
FIN 49.8 0.35 18.6 -0.08 18.5 -0.37 2.9 -0.08 10.2 0.19
SWE 38.4 -0.03 25.8 0.12 21.1 -0.02 2.4 -0.03 12.4 -0.05
UKI 22.3 -0.20 37.2 0.25 27.9 0.01 0.6 -0.02 12.0 -0.04
IRE 21.1 -0.16 41.2 0.89 23.5 -0.57 1.9 -0.09 12.2 -0.07
GRE 19.6 -0.47 39.6 -0.03 25.6 0.29 5.5 -0.10 9.7 0.31
SPA 31.2 -0.26 42.2 0.18 15.3 -0.07 2.8 0.00 8.5 0.16
POR 30.7 -0.58 38.5 0.43 17.3 -0.13 1.7 -0.13 11.8 0.42
BUL 38.2 -1.09 27.6 0.75 21.7 0.49 3.0 -0.12 9.4 -0.03
CZR 36.1 -0.90 24.1 0.96 24.8 0.03 2.1 -0.17 12.9 0.08
EST 22.2 -1.46 28.7 0.92 31.7 0.66 3.4 -0.52 13.9 0.40
LAT 17.6 -0.83 28.0 0.68 35.5 0.67 3.7 -0.37 15.1 -0.14
LIT 22.3 -0.75 31.8 0.70 30.3 0.70 2.4 -0.37 13.1 -0.29
HUN 19.1 -0.93 26.1 0.64 34.5 0.08 2.3 -0.22 17.9 0.43
POL 28.8 -0.84 22.3 0.62 31.9 0.09 7.2 0.12 9.8 0.01
ROM 38.4 -1.86 17.6 0.35 31.7 1.26 1.1 -0.32 11.2 0.56
SLO 34.4 -0.57 31.4 0.24 23.4 -0.12 1.5 0.09 9.3 0.36
SLK 42.3 -0.20 17.2 0.46 21.7 0.41 1.3 -0.21 17.6 -0.46
EU27 27.6 -0.41 31.5 0.33 25.9 0.07 3.1 -0.04 12.6 0.06

Others (services 
included)

Industry Transport Households Agriculture
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TECHNICAL APPENDIX: ESTIMATING DPD EMISSION MODEL BY 
SYSTEM GMM 

The most common way to estimate a dynamic model like (1) is to ignore any 

unobserved regional heterogenerity – i.e., αi=α for all i - and then apply OLS to pooled 

data (OLS-POOL). This strategy may result in seriously biased estimates when regional 

heterogeneity exists [Hsiao (1986)]. Standard alternatives are fixed- or random-effects 

methods, which assume region-specific terms. The random-effects model is used when 

the αi term is uncorrelated with the other explanatory variables, which is unexpected in 

our case. Indeed, the Haussman test rejects the random-effects hypothesis at any 

standard level of significance in the models we estimate in Section 5. Hence, we will 

focus on fixed-effects models hereinafter.  

The fixed effect treatment normally uses the within group estimator (WG) [Hsiao 

(1986)], which has been applied to multiple frameworks.19 As opposed to OLS-POOL 

estimates, the WG estimates yield relatively low values for the estimated parameter of 

the dynamic term in (1). The reason for this result is that the within transformation in 

dynamic models implies a 1/T correlation of order between the lagged dependent and 

the error term, which leads to biased estimates.20 Hence, a kind of instrumental variables 

approach must be used in order to overcome the bias problem.21 Holtz-Eakin et al. 

(1988) and Arellano and Bond (1991) point out this fact and propose a GMM-based 

estimation. The current response of these authors is to first difference the model 

equation, remove the fixed effect term and then use the following orthogonality 

conditions, which, under assumptions (A1) and (A2), are valid for the first differences 

model: 

[ ] ,,...,1,12,...,3,0 NifortsandTtyE itsit =−≤≤==∆− ε    (3) 

Assuming a condition similar to (A2) for endogenous regressors, 

                                                 
19 Islam (1995), Canova and Marcet (1995), De la Fuente (1996) or Barro (2000), among 

many others, have applied the WG method to growth models. 
20 Nickell (1981); Anderson and Hsiao (1982); Hsiao (1986) 
21 Since explanatory variables are not strictly exogenous, the traditional Chamberlain method 

[Chamberlain (1984)] for panel dynamics models also yields inconsistent estimates. 
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A3: [ ] [ ] [ ] ,3,2,1;4,3,2,1;,...,2;,...,1,0111 ======= kjTtNisEmEeE itkiitjiiti εεε  

we have additional moment conditions for the e, mj and sk variables, 

[ ] [ ] [ ]
.3,2,1;4,3,2,1;,...3,2;,...,1;,...,3

,0
=====

=∆=∆=∆ −−−

kjtsNiTt
sEmEeE itskititsjititsit εεε

    (4) 

The conditions in (3) and (4) can be written more compactly as 

[ ] ,,...,1,0' NiZE iiDIF ==∆ε        (5) 

where  and Z( '
43 ,...,, iTiii εεεε ∆∆∆=∆ ) iDIF is a (T-2)xL matrix, with L the total 

number of orthogonality conditions in (3)-(4), and given by22 























=

−−−− 21212121

21212121

2111

............0...0
........
........
....0
0...0

iTiiTiiTiiTi

iiiiiiii

iiii

iDIF

ssmmeeyy

ssmmeeyy
smey

Z

            (6) 

These are the moment conditions exploited by the standard first differenced GMM 

estimator (GMM-DIF.) However, the GMM-DIF estimator has been found to have large 

finite sample bias and poor precision when the set of instruments is weak.23 The 

problem of weak instruments in DPD models arises when: i) time series are persistent, 

ii) the variance of the individual fixed effect term is relatively high and iii) the number 

of time series observations is small (17 in our case). These features are present in our 

case, specially i) and iii). To address this problem, Arellano and Bover (1995) and 

Blundell and Bond (1998) assume conditions in addition to A1, A2 and A3 [see also 

Bond et al. (2001)]: 

A4: [ ] NiyE ii ,...,1,02 ==∆α , 

                                                 
22 For simplicity, we consider the case of J=1 and K=1. The matrix Zi for J=4 and K=3 is 

straightforward. 
23 See Blundell and Bond (1998), among many others. 
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A5: [ ] [ ] [ ] .3,2,1;4,3,2,1,,...,1,0222 ====∆=∆=∆ kjNisEmEeE kiijiiii ααα  

which allows the use of additional moment conditions for the model in levels, 

[ ] ,,...2,1;,...,3,01 NiTtyuE itit ===∆ − ,     (7) 

[ ] [ ] [ ]
.3,2,1;4,3,2,1;,...,1;,...,3

,0111

====

=∆=∆=∆ −−−

kjNiTt

suEmuEeuE ititjitititit
     (8) 

which stay informative even for high persistent time series. Their proposal consists of a 

stacked system of all (T-2) equations in first differences and (T-2) equations in levels 

for t=3,4,…,T, and combine restrictions (3), (4), (7) and (8) to form a linear system 

GMM estimator (GMM-SYS) based on the following instrument matrix: 




















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∆∆∆∆

∆∆∆∆
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−−−− 1111

3333

2222
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0..........
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iTiTiTiT

iiii

iiii

iDIF

i

smey

smey
smey

Z

Z

           (9) 

where ZiDIF is given by (6). Monte Carlo analysis has shown that using GMM-SYS 

greatly reduces the finite sample bias and improves the precision of the estimator in the 

presence of weak instruments. 

Given instrument matrix Z, the linear GMM estimator is 

( ) ( YZZHXXZZHX NN ∆∆∆∆ − '''' 1 )  

where two different choices of HN result in two different GMM estimators. The one-step 

estimator sets  

,1
1

1

'
1,

−

=









= ∑

N

i
iiGMMN HZZ

N
H  
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where the H matrix is a (T-2) square matrix with 2’s on the main diagonal, -1 on the 

first off-diagonals and zeros elsewhere. The two-step GMM estimator uses  

,ˆˆ
1

1

1

''
2,

−

=









∆∆= ∑

N

i
iiiiGMMN ZuuZ

N
H  

where estimated residuals are from a consistent one-step estimator (i.e., the one-step), 

which is an asymptotically efficient GMM estimator.  

Under spherical disturbances, GMM1 and GMM2 are equivalent in the first-difference 

model. Otherwise, GMM2 is more efficient. However, Monte Carlo studies have shown 

that the efficiency gains of the two-step estimator are generally small. It also has the 

problem of converging to its asymptotic distribution relatively slowly. Hence, in finite 

samples, its variance-covariance matrix can be seriously biased. Moreover, for the case 

where the total number of instruments is large relative to the cross-section dimension of 

the panel, there may be computational problems in calculating the two-step estimates 

and serious estimation errors may arise [Arellano and Bond (1998); Doran and Schmidt 

(2006)]. With this in mind, most empirical works with a relatively small cross-section 

dimension report results of the one-step GMM estimator, which has standard errors that 

are asymptotically robust to heteroskedasticity and have been found to be more reliable 

for finite sample inference [Blundell and Bond (1998), Blundell et al. (2000); 

Windmeijer (2005); Bond (2002)]. This is the strategy considered in this paper. 
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