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Strategic behavior in regressions: an experimental

study
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Abstract

We study experimentally in the laboratory the situation when individuals

have to report their private information (that is commonly known to be

the sum of an observable and a random component) to a public authority

that then makes inference about the true value hold by each of the indi-

viduals. It is assumed that individuals prefer this inferred or predicted

value to be as close as possible to the their true value. Consistent with

the theoretical literature, we show that the participants in our experiment

misrepresent their private information more under the OLS than under

the resistant line estimator (which extends the median voter theorem to

the two–dimensional setting). Moreover, only the resistant line estima-

tor is empirically unbiased and subjects earn significantly less if the OLS

estimator is applied.
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†Departmento de Análisis Económico, Universidad de Zaragoza, Gran Vı́a 2, 50005

Zaragoza, Spain. Email: jperote@unizar.es.
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1 Introduction

Motivation Consider a simple linear regression model set up to estimate the

values of a dependent variable conditional on the given values of an independent

variable that represents the type of the individuals. Contrary to the literature

in econometrics, we assume that the regression model not only helps to extract

information about the underlying relationship between the two variables, but

also that it is used to allocate resources among individuals in the future. For

example, we are interested in problems such as the implementation of an income

tax (see, for example, Saporiti 2009), the design of a cost sharing scheme (see,

for example, Thomson 1983 and Sprumont 1991), or the construction of an

incentive program based on estimated productivities (see, for example, Lazear

2000). The mentioned situations have in common that the dependent variable is

unobservable —i.e, the agents’ willingness to pay for a service, their subjective

valuation of public services, or the individual productivity or effort exerted at

work—, and the regressions must rely on reported information.

In this setting, it might be the case that individuals have incentives to ma-

nipulate the regression output to their advantage if classical techniques like the

OLS method are applied. An interesting and quite general case in which this

occurs is when individuals are better off the closer the regression predictions

(based on their reported information) are to their true private information.

The following presents an example of this preference structure: consider a set

of divisions within a big corporation that are asked to report their current ex-

penditure that is private information and will not be revealed with certainty

until the end of the year. The expenditure is a function of the number of work-

ers in each division (or the capital invested) and some random effects. The

divisions are asked to report their actual expenditure in order to design the op-

timal budget allocation among divisions for the next year. Some divisions that

overspend might think that reporting the true expenditure could harm their

longterm interests by inducing the managers to believe that their performance

is below average and that they deserve to be “punished”. So, these divisions

have an incentive to report lower valuations in order to get the regression line
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(the predicted expenditure given their investment level) closer to their true

data. Similarly, divisions that underspend could fear that their above average

performance relative to their investment might be interpreted as higher produc-

tivity and their next year funding could be reduced or their future targets be

risen. These divisions will gain by exaggerating their true performance to bring

the regression line closer to their true expenditures. We therefore assume that

the individuals reporting the data always prefer to have the predicted value

corresponding to their type as close as possible to their true private informa-

tion. This kind of preferences over predicted values are called single–peaked

preferences in the literature on voting and social choice theory.

The problem of regressions when individuals have single–peaked preferences

call for the search of mechanisms that are strategy–proof ; that is, we look for

estimators that provide individuals with incentives to reveal their private infor-

mation truthfully.1 These estimators can be obtained by using the properties

of the median that have been proved to be strategy–proof in public goods al-

location problems when individuals have single–peaked preferences on a single

dimension (see, Moulin 1980). The extension of this “median voter” theorem

to the two–dimensional context together with a whole family of strategy–proof

estimators called “clockwise repeated median estimators” (CRM hereafter) can

be found in Perote and Perote-Peña (2004). We will introduce these estimators

formally in the next section.

Experiment While the theoretical results in Perote and Perote-Peña (2004)

reveal that the class of CRM estimators outperforms the OLS estimator in

terms of its manipulability when preferences a single–peaked, it is still an open

question whether individuals take this adequately into account. To study this

question, we run a laboratory experiment that is organized as follows: each

subject in a groups of eight is assigned an observable variable x (called in-

1Formally, the direct revelation mechanism is manipulable if there is some individual i

and some strategy profile played by the other individuals such that not revealing the true

preferences is a best response for individual i. The direct revelation mechanism is startegy–

proof if and only if no individual can manipulate it; see Barberà (2001).
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come) from the interval {2, 4, . . . , 16}. The private information yi of individual

i (called contribution) is equal to xi +ui, where ui is normally distributed with

mean zero and variance four. Individuals then report simultaneously their pri-

vate information to the public authorities who then obtain predictions of the

contributions from the data using either the OLS estimator (treatment OLS)

or the resistant line estimator (treatment RL), one salient member of the class

of all CRM estimators.

In line with the hypotheses derived from the theoretical predictions, we

find that the RL estimator outperforms the OLS estimator on all important

dimensions. First, the degree of manipulation (the mean absolute difference

between the reported and the true private information) is significantly greater

under the OLS than under the RL estimator. In fact, the average manipulation

amounts to 2.79 for the OLS and to 1.32 for the RL estimator. Interestingly, the

difference between the two treatments is significant for all observable income

levels. Also, we only find in treatment OLS that subjects with a higher income

manipulate more than subjects with a lower income. This result suggests that

subjects expected substantial manipulations when the OLS estimator is used

(if they believed that the slope of the estimated line is close to one, the degree

of the manipulation should not depend on the actual income). Second, it turns

out that only the RL estimator is empirically unbiased; that is, the average

estimated slope and the average estimated intercept are not statistically differ-

ent from the true theoretical values. While we hypothesized that RL estimator

performs relatively better than the OLS estimator on these terms, this even

stronger finding clearly reveals the superiority of the RL estimator over the

OLS estimator when the data is obtained from strategic individuals. Finally, a

direct consequence of the former findings is that the social welfare is higher if

the RL estimator is applied.

Remainder In the next section, the theoretical model is presented. Section 3

introduces the experimental design and derives the hypotheses. Afterwards, we

present our experimental results. Finally, we conclude. Some estimation results

and the translated instructions are relegated to the appendices.
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2 Model

In this section, we introduce the formal model and the class of clockwise repeated

median estimators (CRM estimators).

Consider a set N = {1, 2, 3, . . . , n} of individuals indexed by i. There are

two variables x and y that take values in R, so let D be the collection of

all bi–dimensional data points (xi, yi) ∈ R2. For all individuals i ∈ N , xi is

publicly observable, but yi is only known to individual i herself. To simplify

the exposition, individuals are numbered in increasing order with respect to the

vector x = (xi)i∈N , so that x1 ≤ x2 ≤ . . . ≤ xn. Also, there is a known (albeit

random) structure that connects x and y. In particular, we follow the standard

simple linear econometric model according to which y = β1 + β2 x + u. In

this equation, u is a random n× 1 vector distributed N(0, σ2 I), where σ2 > 0

and I is the n × n identity matrix, and β′ = (β1, β2) ∈ R2 is the vector of the

parameters of the model.

This structure is supposed to be used to implement some policy depending

on individual performances, which are measured in terms of the deviations

of y from the (estimated) conditional mean of variable y given x, Ê[y|x] =

β̂1 + β̂2 x ≡ ŷ. This is to say that individual i is better off the lower the

distance |yi − β̂1 − β̂2 xi| is; that is, individual i is better off the closer the

estimate ŷi is to the true value yi. Individuals have to report their private

information to compute the estimates of the Ê[yi|xi], and we denote by ỹi the

value individual i reports when her true realization is yi.

Under the assumption of the simple linear econometric model, Ê[yi|xi] =

β̂1 + β̂2 xi = ŷi is the best linear predictor for E[yi|xi] provided that β̂1 and β̂2

are obtained by OLS from the true sample data. Obtaining such a performance

measure needs to overcome two main problems. First, the traditional econo-

metric estimation of E[yi|xi] requires the researcher to impose an assumption

on the data generating process of yi. As explained before, we consider here the

traditional simple linear regression model. Second, if yi is not observable and

we base the estimation on the reported values ỹ, individuals may have incen-

tives to report false information to improve their performance. For example,
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in this context the OLS estimator β̂OLS is the one that minimizes the sum of

the squared residuals û′û, where û = ỹ−x β̂OLS . This estimator is clearly ma-

nipulable because an individual has incentives to reduce the distance between

her true and her estimated value |yi − β̂1,OLS − β̂2,OLS xi| by declaring higher

(lower) values whenever the residual for the true sample is positive (negative).

In order to avoid the problem of strategic data manipulation, one can apply

an alternative strategy–proof estimator from the class of all CRM estimators.

An especially attractive member of this family is the well–known resistant line

(RL) method (see, Tukey 1970), a simple regression method that is robust to

the appearance of outliers and satisfies further important statistical properties

(see, Johnstone and Velleman 1985). In order to introduce the resistant line

method, we first have to specify a partition of the x−values into three groups.

In particular, we have to choose two individuals l, r ∈ N such that l ≤ r and

both l and n − r are odd. The individuals l and r are used to divide the

data set D into a left sample Dl = {(xi, ỹi) ∈ D | i ≤ l} and a right sample

Dr = {(xi, ỹi) ∈ D | i > r}. The slope estimate of the resistant line method

β̂2,RL is defined as the solution for β2 to the following equation:

Median
i≤l

{ỹi − β2 xi} = Median
i>r

{ỹi − β2 xi}.

This method amounts to finding graphically the line that has for both the

left and the right sample the equal number of points above and below it. Since

there is an odd number of observations in both samples, the regression line

must pass through at least one observation of each group. There exist several

algorithms to calculate the resistant line, but we shall use here the strategy

of the clockwise angles technique, since it is quite simple and instrumental in

defining all members of the CRM estimators class. According to it, we have to

apply the following three–step approach.

1. For all individuals i ≤ l and all individuals j > r, determine the angle

αij that is obtained if observation (xi, ỹi) is connected with observation

(xj , ỹj) by a straight line.2

2Observe that the angle of a vector that points from an observation (xi, ỹi) in the bi–
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2. Then, for all individuals i ≤ l, calculate the median angle of subject i as

φi = Median {j > r : αi,j}.

3. Finally, calculate the directing angle DA = Median {i ≤ l : φi}. The es-

timate β̂2,RL of the slope is then just the tangent of the directing angle;

that is, β̂2,RL = tan(DA). Then, if individuals i ≤ l and j > r define

the directing angle so that the regression passes through the observations

(xi, ỹi) and (xj , ỹj), the estimate of intercept β̂1,RL is the intercept corre-

sponding to that line; that is,

β̂1,RL =
xj · ỹj − xi · ỹi

xj − xi
.

Note that the resistant line always exists and that it is unique under our condi-

tions. A graphical example of this algorithm is given in the instructions of the

experiments in the appendix.

Let us now provide an intuition about why the resistant line method is

strategy–proof. Given any vector of reports ỹ such that individual i ≤ l declares

her private value truthfully (ỹi = yi), suppose that the estimation process

results in a situation in which the true value yi of individual i lies strictly above

the resistant line; that is, yi > ŷi. In this case, if individual i declares any other

value ỹ′i > yi, the resistant line will not be affected. Hence, she cannot gain by

deviating in this direction. On the other hand, if she declares any value ỹ′i < yi,

the resistant line either does not move or shifts downwards, which implies that

the prediction for individual i does not get better (yi − ŷi grows or remains

the same). In fact, the only way for such an individual i to affect the resistant

line is by reporting a y−value that jumps over the existing line and in case of

shifting the regression line, it always takes it further away from the true value

yi. Consequently, individual i cannot gain from these deviations either. An

identical reasoning holds for all observations lying below the existing resistant

line (i ≤ l but yi > ŷi) and those such that i > r. Consider finally the individuals

dimensional space (x, y) to another observation (xj , ỹj) —remember that since xj > xi, the

second observation is always to the right of the first one— is simply the angle defined by the

vector to the north (counter–clockwise).
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that serve as support for the resistant line. They can clearly shift the resistant

line in both directions, but since they get their most preferred outcomes, they

cannot gain from misrepresenting their private information. Finally, since no

individual has incentives to misreport her private value, we can conclude that

the resistant line estimator is strategy–proof.

Despite the theoretical advantages of this method when strategic individuals

provide the data, it can be argued that in practice agents may not be aware

about its good strategic properties and are thus still going to manipulate the

data. In what follows, we design an experiment to investigate this question.

3 Experiment

3.1 Setting

We applied a between–subjects design to see whether the RL estimator performs

better than the OLS estimator in assessing the private information of individ-

uals. We framed the experiment in the context of a tax declaration problem in

order to help subjects to better understand the general environment. At the

beginning of the game, every individual i = 1, 2, . . . , 8 in a group of eight sub-

jects gets assigned her income xi = 2 · i, which is observable to all participants

(the exact incomes are known to the subjects, but we never revealed the actual

mapping between subjects and incomes). Each subjects then privately observes

her contribution yi, which is randomly drawn from the publicly known data

generating process

yi = xi + ui, where ui ∼ N(0, 4).

Observe that β1 = 0 and β2 = 1. The participants are then asked to simultane-

ously and independently report their contribution. The revealed contribution

or report ỹi of subject i can be any rational number from the interval [0,24].

Given a vector of reports ỹ′ = (ỹ1, ỹ2, . . . , ỹ8), inference about the true contri-

bution is made using either the OLS or the RL estimator. The exact procedure

is known to the subjects.
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1. Treatment 1: OLS

If the OLS estimator is used,

β̂2,OLS =

n∑
i=1

(xi − x̄)(ỹi − ¯̃y)

n∑
i=1

(xi − x̄)2

and

β̂1,OLS = ¯̃y − β̂2,OLS x̄,

where ¯̃y = 1/8
∑

i ỹi and x̄ = 9.

2. Treatment 2: RL

If the RL estimator is used, the following procedure is applied. First, we

define the sets L = {1, 2, 3} and R = {6, 7, 8} containing the first three

and the last three subjects, respectively, and compute the nine angles

formed if each report from the members of L is connected with each

report from the members of R. The median angle of subject i ∈ L is

then φi = Median{αi6, αi7, αi8}. The directing angle is then given by

DA = Median{φ1, φ2, φ3}. Finally, the estimate of the slope is obtained

as the tangent of the directing angle,

β̂2,RL = tan(DA),

and the estimate of the intercept is the one that corresponds to the two

observations of the sample that are defining the directing angle; that is, if

the regression passes through the observations (xi, ỹi) and (xj , ỹj), then

β̂1,RL =
xj · ỹj − xi · ỹi

xj − xi
.

Once the estimator β̂′ = (β̂1, β̂2) is obtained from the reports, the fitted contri-

bution ŷi for subject i is calculated as

ŷi = β̂1 + β̂2 · xi.

Finally, subjects receive their payoff as a function of their true and their fitted

contribution:

πi(yi, ŷi) = max{5− |yi − ŷi|, 0}.
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3.2 Procedures

We conducted the experiment, which was programmed within the z–Tree tool-

box (see, Fischbacher 2007), in the Laboratory for Research in Social and Eco-

nomic Behavior (LINEEX), which is hosted at the University of Valencia. For

each treatment, we organized one session with 8 subjects and another one with

40 subjects. Hence, in total, 96 undergraduates from various disciplines partic-

ipated in one of the experimental sessions.

Before the start of a session, participants privately read the instructions that

included a detailed example of the estimation technique (see, the appendix).

The subjects were then able to test their understanding of the instructions in

six practice rounds that did not affect their final payoff. After the completion

of the practice rounds, the participants had to answer several control questions.

The software only started once all participants answered all control question

correctly.

Participants were then randomly assigned into groups of eight. Their iden-

tities were never revealed. To ensure that the data is truly independent across

groups, the participants were also informed that they would only play against

subjects from the same group and that the group assignment would not change

during the experiment. Within each group, the game was played 48 times. The

48 rounds were divided into 6 blocks of 8 rounds. Subjects were assigned in-

comes (types) in such a way that within each block, every subject had once an

income of 2, once an income of 4, and so forth. To maximize the comparability

of the treatments, one series of error terms of size 8 (subjects per group) × 6

(number of groups) × 48 (number of periods) was drawn. This series of error

terms was then used in both treatments.

In each round, after having learned their income and their contribution,

subjects submitted their reports. Given the vector of reports, the fitted con-

tributions were determined and the participants received their payoffs. At the

end of round, the subjects were presented a summary screen that included their

income, their contribution, their report, their fitted contribution, the difference

between their true and their fitted contribution, and their payoff. The same
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information was also graphically presented together with the estimated line

ŷ = β̂1 + β̂2 · x

and the 95 % confidence interval of the contribution (see, the instructions in

the appendix). Observe that the participants never received information on the

true or reported contribution of their co–players.

Participants earned experimental currency units (ECUs) during the exper-

iment that were converted into Euros at a known exchange rate at the end of

the experiment. Payment took place privately and the students had to leave

the laboratory immediately once paid. The average payoff was 17.03 Euros in

treatment OLS and 17.36 Euros in treatment RL. A session lasted on average

approximately 105 minutes.

3.3 Hypotheses

We now derive the experimental hypotheses that follow straightforwardly from

the theoretical analysis in Section 2. Most importantly, since the RL estima-

tor is strategy–proof and the OLS estimator is manipulable, we expect that

the average absolute difference between the reported and the true contribution

|ỹi − yi| is larger in treatment OLS than in treatment RL. Observe that we

do not expect the difference to be zero in treatment RL as predicted by the

theoretical model, since it is very likely that many subjects will not realize that

it is in their best interest to report their true contribution.

Hypothesis 1 (Manipulations): The average absolute difference between

the reported and the true contribution (the degree of manipulation) is larger in

treatment OLS than in treatment RL.

It is easy to see that if all subjects report their private information truthfully,

then both estimators are unbiased and the expected payoff of the subjects is

maximal for the OLS. However, if subjects manipulate more under the OLS

estimator than under the RL estimator, as it has been predicted in Hypothesis

1, the strategic interaction leads to a worse outcome in treatment OLS. Con-

sequently, we expect the average estimate of the OLS estimator β̂OLS to be
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further away from the true parameters β′ = (0, 1) of the true underlying data

generating process than the average estimate of the RL estimator β̂RL.

Hypothesis 2 (Biasedness): The OLS estimator β̂OLS is more biased than

the RL estimator β̂RL.

Following exactly the same line of argumentation as above, under Hypothesis 1

the average payoff should be higher under the RL estimator than under the OLS

estimator. This hypothesis highlights that there are negative welfare effects un-

der the OLS estimator if the data is revealed strategically and individuals have

single–peaked preferences.

Hypothesis 3 (Payoffs): The average payoff is higher in treatment RL than

in treatment OLS.

4 Results

This section is divided into three parts. We study first how the subjects manip-

ulate the estimators (Hypothesis 1). Afterwards, we analyze if, as a consequence

of individual behavior, the estimators are biased (Hypothesis 2). Finally, we

analyze welfare (Hypothesis 3).

In our statistical analysis, we proceed as follows. First, we calculate for each

group the averages of the variables of interest over all rounds: the difference

between the true and the reported contribution, the estimated slope and inter-

cept, and the payoff. This results in six truly independent observations (one

per group). We then apply Wilcoxon signed–rank tests for within treatment

comparisons and Mann Whitney U tests for between treatment comparisons.

4.1 Manipulations

Our first hypothesis states that subject manipulate more if the OLS estimator

is applied. To see whether this is true, we plot in Figure 1 the average absolute

difference between the true and the reported contributions. The values are

averaged over three rounds and all group.
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Figure 1: Average manipulation (absolute value of the difference between the true and the
reported contribution) for the OLS treatment (bullets) and the RL treatment (circles) over
rounds (3–round averages).

The figure shows that subjects deviate more from their true contribution

under the OLS than under the RL estimator in all periods of the experiment.

In fact, the average manipulation in treatment OLS is about 3.5 ECU in the

beginning of the experiment and declines slightly over time to values between

2.5 and 3 ECU. On the other hand, in treatment RL, the average deviation

starts at about 1.5 ECU, where it roughly remains until the end of the ex-

periment. Overall, the average manipulation is 2.79 ECU under the OLS but

only 1.32 ECU under the RL estimator. A Mann Whitney U test establishes

that this difference is significant —the one–sided p−value is equal to 0.0039—

and therefore, we can conclude that the subjects’ reports are further away from

their true contribution under the OLS than under the RL estimator.

Treatment Income in ECU

2 4 6 8 10 12 14 16

OLS 1.92 2.28 2.11 2.80 2.53 2.93 3.48 4.23

[0.0250] [0.0160] [0.0250] [0.0066] [0.0250] [0.0039] [0.0039] [0.0039]

RL 1.29 1.25 1.18 1.42 1.26 1.46 1.21 1.48

Table 1: Average manipulation (absolute value of the difference between the true and the
reported contribution) for the OLS and the RL treatment by income. In brackets, the two–
sided p−values of the corresponding Mann Whitney U tests at the group level.
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One question that emerges at this point is whether the RL estimator works

better in terms of manipulations than the OLS estimator for all income levels.

The relevant data is presented in Table 1. It can indeed be seen that subjects

deviate more from their true contributions level under the OLS than under the

RL estimator independently of their income level. This insight is fully supported

by the statistical analysis (see the p−values in the table).

Table 1 also reveals that the degree of manipulation increases with the

income in treatment OLS. For example, while subjects with an income between

2 and 6 ECU deviate from their true contribution by about 2 ECU, subjects

with an income of 14 ECU manipulate on average by 3.48 ECU, and subjects

with an income of 16 ECU deviate even more than 4 units. Some part of this

trend can certainly be attributed to the fact that the reports in our experiment

are restricted to be non–negative, however this limitation only affects subjects

with the lowest incomes and it cannot account for the fact that the subjects with

an income of 16 ECU deviate significantly more from their true contribution

than all other income groups (the two–sided p−values of the corresponding

Wilcoxon signed rank tests are between 0.0277 and 0.0464).

The picture one gets in treatment RL is very different. The group that

manipulates least is not the one with the lowest income but the one that contains

the subjects with an income of 6 ECU (they deviate on average by 1.18 ECU).

Subjects with an income of 16 ECU still manipulate more than all other income

groups, but the difference is now rather negligible: these subjects deviate on

average by only 0.40 ECU more than the group that manipulates least. From

a statistical point of view, it turns out that only 3 of the 28 possible pairwise

comparisons are significant at the five percent level: the comparison between

subjects with an income of 16 ECU and those with an income of 6, 4, and 12

ECU, respectively. Consequently, we summarize our results so far as follows.

Result 1: Subjects manipulate more in treatment OLS than in treatment RL.

This is true for all periods and all income levels. The degree of manipulation

increases with the income in treatment OLS but not in treatment RL.
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4.2 Biasedness

We have seen in the first part of our analysis that subjects indeed manipulate

more if the OLS estimator is used. Next, we are going to study the consequences

of these manipulations for the properties of the estimators.

In principle, there is the possibility that the larger deviations from the true

contributions cancel out in such a way that the OLS estimator remains unbiased

(the estimated parameters are equal to the true underlying process), however

for this to happen the different manipulations must exactly offset each other.

Since this seems highly unlikely, our second hypothesis states that only the RL

estimator is unbiased. In order to evaluate the hypothesis, Table 2 presents

the average fitted intercepts and the average fitted slopes.3. Remember that,

according the true process, the intercept equals zero and the slope equals 1.

Estimates Treatment

OLS RL

Intercept 1.4467 [0.0250] -0.0966
(0.0464) (0.9165)

Slope 0.8019 [0.0104] 0.9606
(0.0277) (0.2489)

Table 2: Average estimated intercept and slope for the OLS and the RL treatment. In
parenthesis, the two–sided p−values of the Wilcoxon signed–rank tests at the group level that
analyze whether the estimates are equal to the true underlying process. In brackets, the two–
sided p−values of the Mann Whitney U tests at the group level that analyze the equality of
the estimates across treatments.

It can be seen from the table that the OLS estimator is highly biased: the

average fitted intercepts is significantly larger than zero and, most importantly,

the average fitted slope is significantly smaller than one. On the other hand,

we cannot reject the hypothesis that the RL is unbiased at the five percent

significance level. Indeed, both the average fitted intercept and the average

fitted slope are very close to the true values.

3Figures 2 and 3 in the appendix present the average estimates at the group level. Ob-

serve that the intercept and the slope of the presented graphs correspond to the independent

observations of our statistical analysis
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Result 2: Only the RL estimator is empirically unbiased.

4.3 Payoffs

By definition, the OLS estimator minimizes the sum of the squared residuals,

which is not the case for the RL estimator. Hence, if subjects always reported

their contributions truthfully, the final payoffs would necessarily be higher in

treatment OLS than in treatment RL (because of the single–peakedness of the

utility function). However, since we have shown in Result 2 that only the RL

estimator is unbiased, it is a priori not clear in which treatment subjects fare

better.

If we compare the relevant numbers, it turns out that subjects earn on

average 2.91 ECU per period in treatment OLS and 3.26 ECU in treatment RL.

Since this difference turns out to be significant (the two–sided p−value of the

corresponding Mann Whitney U test is 0.0104), there is statistical evidence that

even though the OLS estimator minimizes the sum of the squared residuals, the

RL estimator leads to fitted values that are closer to the true contribution levels.

Hence, the loss in the efficiency of the estimator is more than compensated by

strategy–proofness.

Finally, and similar to our analysis with respect to the manipulations, we

are going to study whether the payoff of the subjects depends on the income

level. The corresponding data is presented in the next table.

Treatment Income in ECU

2 4 6 8 10 12 14 16

OLS 2.92 3.00 3.26 2.95 3.23 2.89 2.61 2.41

[0.0782] [0.2623] [0.1630] [0.2002] [0.7488] [0.6310] [0.0374] [0.0104]

RL 3.27 3.32 3.70 3.70 3.25 3.14 3.35 3.28

Table 3: Average payoff for the OLS and the RL treatment by income. In brackets, the
two–sided p−values of the corresponding Mann Whitney U tests at the group level.

It can be seen from Table 3 that for all income levels, subjects earn more

in treatment RL than in treatment OLS. Yet, the difference is only significant
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at the five percent level if the income is 14 or 16 ECU, the two income levels

where subjects manipulated most and earn least in treatment OLS.

Result 3: Subjects earn more in treatment RL than in treatment OLS; that is,

the RL estimator leads to values that are closer to the true underlying contri-

butions than the OLS estimator.

5 Conclusion

In this paper, we have designed a laboratory experiment in order to study the

performance of the OLS and the resistant line estimator when the dependent

variable is unobservable and the corresponding data is gathered from the reports

of strategic individuals. It is well known from the theoretical literature that if

preferences are single–peaked (that is, the individuals prefer their estimated

value to be as close as possible to their private information), then individuals

have incentives to misrepresent their private information under the OLS but

not under the resistant line estimator. Our experimental results fully confirm

the superiority of the resistant line estimator for this case. In fact, we find

that (1) subjects deviate more from their true private information under the

OLS than under the RL estimator, (2) only the RL estimator is empirically

unbiased, and (3) subjects earn significantly more under RL than under the OLS

estimator. Our results therefore highlight that the OLS estimation procedure

should be used with care whenever the dependent variable is obtained from

individual reports and the payoff of the individuals depends on the estimation

results. In these cases, alternative strategy–poof estimation techniques should

be investigated and implemented.
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Figure 2: The average fitted regression line (in red) and the true underlying process (in
black) in the OLS treatment for each of the six groups.
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Figure 3: The average fitted regression line (in red) and the true underlying
process (in black) in the RL treatment for each of the six groups.
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Instructions OLS (Translated from Spanish)

This experiment explores the design of an income tax system. You will be

assigned to a group of 8 subjects that remains constant during the 48 rounds

that the experiment lasts. In every round, you may earn a quantity measured

in ECU (experimental currency units) that will be converted in euros at the

end of the experiment at the rate

10 ECU = 1 Euro.

1. In every round, you will be assigned an income R and a contribution C.

The participants from your group have different incomes of the follow-

ing quantities: {2, 4, 6, 8, 10, 12, 14, 16}. The contribution of every group

member depends on the income and will be randomly drawn from the

following process:

C = R+ e,

where e is a normally distributed random variable with mean zero and

variance four. This means that if your income is R, then your contribution

C will be in the interval (R− 4, R+ 4), although with a small probability

of 5% it may be outside this interval. Note that all participants from

your group know the incomes but NOT the contributions of the other

co-players; that is, every participant only knows her own contribution.

2. The only decision you have to take each period is to report a contribution.

The reported contribution can be a (rational) number between 0 and 24.

3. Given the reported contributions of all group members, an estimation of

the parameters of an income tax system will be computed: the intercept

(lump-sum) and the slope (income percentage). This computation will

be based on a simple rule that will be explained below in the section

“estimation method”.

4. Given the estimates for the intercept and the slope, an estimated contri-

bution C∗ will be computed for every subject in the following way:

C∗ = intercept+ slope×R.
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5. Each round, the payoff you receive will be the maximum of zero and

5− |C − C∗|.

Consequently, your monetary benefits from the experiment will be the

higher the closer the estimated contribution is to your true contribution.

Next, we display a figure as an illustration of those you will find throughout

the experiment.

In the graph on the left hand side of the figure, the red lines capture the

bands where the contributions of the eight subjects of your group should be

placed with 95% probability. Your income (R) is 10, your contribution (the red

point) is 15, and your reported contribution (the back point) is 16. The green

line indicates the estimated contributions that are obtained from the reported

contributions of all group members. In particular, the yellow point represents

your own estimated contribution given the estimated income tax system.

On the right hand side of the figure, you find the values of the main variables,

which will be collected in a table as the experiments progresses. Every period

it is displayed the value of your income, your contribution (the red point), your
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reported contribution (the black point), your estimated contribution (the yellow

point), the difference between your true and your estimated contribution (the

blue line segment) and your payoff from the period.

Estimation method

In every period, the estimation of the income tax line C∗ = intercept+slope×R

requires the estimation of both the “intercept” and the “slope” parameters given

the known values of the income R and the reported contributions of the eight

group members. Hereafter, we show an example which explains graphically the

procedure to obtain these estimates assuming that reported contributions are

those in the next picture below.

Given these observations, the estimated line (the green line in the figure

below on the left hand side) will be the one that minimizes the sum of the

squared vertical distances (errors) between the reported contributions and those

of the estimated line. Note the sum the errors above (the blue lines) and below

(the red lines) the estimated line are exactly the same. In the example, it is

assumed that the reported contributions are the truly assigned contributions.

The estimated contributions are the values of the contributions for every income

level on the estimated line (the green line). The final payoffs of the period

are computed as 5 minus the distance between the true contribution and the

estimated contributed.
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R C rev. C est. C Payoff

2 4.4 4.4 5.0 4.4

4 2.3 2.3 6.3 1.0

6 10.8 10.8 7.6 1.8

8 6.5 6.5 8.9 2.6

10 15 15 10.3 0.3

12 15.8 15.8 11.6 0.8

14 12.1 12.1 12.9 0.7

16 10 10 14.3 0.7

We are now going to illustrate the impact of your reported contribution

on payoffs. Starting with the numbers in the table above, what would have

happened if the subject with income 16 and the contribution 10 had reported

a contribution of 2.3 (red point in the figure below)? You can observe the

impact of such decision on the estimated line, which would have changed from

the “light green” to the “dark green” line, in the plot below. The table on the

right highlights the effects on the payoffs for all subjects in the group. It is

clear that the subject that changed her reported contribution would increase

its payoff from 0.7 to 3.9.

R C rev. C est. C Payoff

2 4.4 4.4 6.2 3.2

4 2.3 2.3 6.9 0.4

6 10.8 10.8 7.6 1.8

8 6.5 6.5 8.3 3.2

10 15 15 9 0

12 15.8 15.8 9.7 0

14 12.1 12.1 10.4 3.3

16 10 2.3 11.1 3.9

Finally, what would have happened if the subject with income 6 had re-

ported 15.8 instead of her true contribution, 10.8? The following figure and
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table illustrate this case. The subject with income 6 would increase its payoff

from 1.8 (her payoff for the initial case where all subjects report their true con-

tribution) to 2.7.

R C rev. C est. C Payoff

2 4.4 4.4 6.2 3.2

4 2.3 2.3 7.4 0

6 10.8 15.8 8.5 2.7

8 6.5 6.5 9.7 1.8

10 15 15 10.8 0.8

12 15.8 15.8 12 1.2

14 12.1 12.1 13.1 4

16 10 10 14.3 0.7

Now you will be able to practice in your computer with similar examples

during six different periods. The payoffs of these rounds will not affect your

final payoffs. Once you finish these examples and after filling out a brief ques-

tionnaire, the experiment will start. Remember that the experiment lasts 48

periods and you will play all of them within the same group composition.
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Instructions RL (Translated from Spanish)

This experiment explores the design of an income tax system. You will be

assigned to a group of 8 subjects that remains constant during the 48 rounds

that the experiment lasts. In every round, you may earn a quantity measured

in ECU (experimental currency units) that will be converted in euros at the

end of the experiment at the rate

10 ECU = 1 Euro.

1. In every round, you will be assigned an income R and a contribution C.

The participants from your group have different incomes of the follow-

ing quantities: {2, 4, 6, 8, 10, 12, 14, 16}. The contribution of every group

member depends on the income and will be randomly drawn from the

following process:

C = R+ e,

where e is a normally distributed random variable with mean zero and

variance four. This means that if your income is R, then your contribution

C will be in the interval (R− 4, R+ 4), although with a small probability

of 5% it may be outside this interval. Note that all participants from

your group know the incomes but NOT the contributions of the other

co-players; that is, every participant only knows her own contribution.

2. The only decision you have to take each period is to report a contribution.

The reported contribution can be a (rational) number between 0 and 24.

3. Given the reported contributions of all group members, an estimation of

the parameters of an income tax system will be computed: the intercept

(lump-sum) and the slope (income percentage). This computation will

be based on a simple rule that will be explained below in the section

“estimation method”.

4. Given the estimates for the intercept and the slope, an estimated contri-

bution C∗ will be computed for every subject in the following way:

C∗ = intercept+ slope×R.
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5. Each round, the payoff you receive will be the maximum of zero and

5− |C − C∗|.

Consequently, your monetary benefits from the experiment will be the

higher the closer the estimated contribution is to your true contribution.

Next, we display a figure as an illustration of those you will find throughout

the experiment.

In the graph on the left hand side of the figure, the red lines capture the

bands where the contributions of the eight subjects of your group should be

placed with 95% probability. Your income (R) is 10, your contribution (the red

point) is 15, and your reported contribution (the back point) is 16. The green

line indicates the estimated contributions that are obtained from the reported

contributions of all group members. In particular, the yellow point represents

your own estimated contribution given the estimated income tax system.

On the right hand side of the figure, you find the values of the main variables,

which will be collected in a table as the experiments progresses. Every period

it is displayed the value of your income, your contribution (the red point), your
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reported contribution (the black point), your estimated contribution (the yellow

point), the difference between your true and your estimated contribution (the

blue line segment) and your payoff from the period.

Estimation method

In every period, the estimation of the income tax line C∗ = intercept+slope×R

requires the estimation of both the “intercept” and the “slope” parameters given

the known values of the income R and the reported contributions of the eight

group members. Hereafter, we show an example which explains graphically the

procedure to obtain these estimates assuming that reported contributions are

those in the next picture below.

Given these observations, the estimated line is obtained as follows.

1. Take the subject with income 2 and trace the vectors that pass through

her reported contribution and those of the subjects with incomes 12, 14

y 16. From these three lines, choose the median or central one (the red

line).
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2. Take the subject with income 4 and trace the vectors that pass through

her reported contribution and those of the subjects with incomes 12, 14

y 16. From these three lines, choose the median or central one (the red

line).
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3. Take the subject with income 6 and trace the vectors that pass through

her reported contribution and those of the subjects with incomes 12, 14

y 16. From these three lines, choose the median or central one (the red

line).
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4. Now take the three median vectors chosen in the last three steps (asso-

ciated with the observations of the subjects 2, 4 y 6, respectively) and

choose the median (central) one of these thee vectors as the estimated

line.

Consequently, the estimated line always passes through two of the reported

observations: those with the median reported contribution of the subjects with
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the three lowest (2, 4 an 6) and largest (12, 14 and 16) incomes. Furthermore

observations of subjects with income 8 and 10 are always discarded in the

procedure.

Given the estimated line in the figure above, the initial payoff of 5 ECU

for every participant will be reduced by the vertical distance between the true

contribution C and the one corresponding to the estimated line. Let us assume

that all subjects reported their true assigned contributions except for the sub-

ject with income 16, whose true contribution is 12.1, instead of 10, which is

what she reported. In this case, payoffs are 5 ECU minus the vertical distances

from their reported values to the estimated ones (depicted in blue).
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R C rev. C est. C Payoff

2 4.4 4.4 4.4 5

4 2.3 2.3 5.7 1.6

6 10.8 10.8 6.9 1.1

8 6.5 6.5 8.3 3.3

10 15 15 9.5 0

12 15.8 15.8 10.8 0

14 12.1 12.1 12.1 5

16 12.1 10 13.4 3.7

Note that if the subject with income 16 had reported her true contribution

12.1 or whichever other value less than13.3, she would have obtained the same

payoff since it would have not changed the estimated line (given the same values
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for all other subjects). Still, if he had reported a higher contribution than

13.3 (estimated contribution for all the true contributions), for example 15, the

estimated line and her expected payoff (and that of all other participants) would

have changed. Finally, we present a figure and a table with the estimated line

and corresponding payoff in this case.
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R C rev. C est. C Payoff

2 4.4 4.4 4.4 5

4 2.3 2.3 5.9 1.4

6 10.8 10.8 7.4 1.6

8 6.5 6.5 8.9 2.6

10 15 15 10.5 0.6

12 15.8 15.8 12 1.1

14 12.1 12.1 13.5 3.7

16 12.1 15 15 2.1

Now you will be able to practice in your computer with similar examples

during six different periods. The payoffs of these rounds will not affect your

final payoffs. Once you finish these examples and after filling out a brief ques-

tionnaire, the experiment will start. Remember that the experiment lasts 48

periods and you will play all of them within the same group composition.
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