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1. Introduction  
 

Most countries collect data on household expenditure and household income in separate 
surveys, which are, respectively, the Household Budget Survey (HBS) and the Statistics on 
Income and Living Conditions (SILC). HBS provides information about household 
spending, while SILC reports on household income, the main direct taxes, and social 
contributions. A single database with microdata on income and expenditure is therefore 
essential for studying the household tax burden including direct and indirect taxes.  

There are several ways to merge SILC and HBS. Decoster (2007) divides these 
techniques into two different groups: explicit and implicit methods. Explicit methods use 
estimations of Engel curves to impute household expenditure into the income dataset. The 
model is usually estimated by Ordinary Least Squares (OLS) (O’Donoghue et al., 2004; 
Decoster et al., 2013, 2014; Savage and Callan, 2015,). The implicit methods or hot deck 
method is a non-parametric approach. The procedure finds records in the donor file and 
matches them with records in the recipient file, based on a distance function (D’Orazio et al., 
2006; Donatiello et al., 2014).   

The matching technique most widely used in the literature is the estimation of Engel 
curves in HBS to impute household expenditure into SILC data using regression coefficients. 
The dependent variable is usually the logarithm of household expenditure, and the 
independent variables are the logarithm of income and a set of specific household dummy 
variables. This model is estimated by OLS. The estimation in logs has certain advantages, as 
it can deal with skewness in data and reduce heteroskedasticity. However, we are interested 
in the estimation in levels (euros), and not in logarithms. This problem is flagged in the 
literature as the retransformation problem,1 and it is solved using a smearing estimate (Duan 
et al., 1983). Manning (1998) has shown that the correction of the smearing estimate only 
works for homoscedastic or heteroskedastic errors due to categorical variables. In the 
presence of heteroskedasticity, the smearing estimate produces a bias. In our case, the HBS 
expenditure estimation process records heteroskedasticity of an intrinsic nature.  

Generalized Linear Models (GLMs) have been reported in recent literature for estimating 
health expenditure (Blough et al., 1999; Manning and Mullahy, 2001; Manning et al., 2005; 
Jones, 2010). They have been proposed as an alternative to OLS regression in logs. 
However, Baṣer and Yuce (2010) and Manning and Mullahy (2001) have noted that GLMs 
are less accurate when kurtosis increases.  

The aim of this paper is to select the most suitable model for estimating HBS expenditure 
in order to impute these results in SILC in a statistical-matching procedure. The selection 
process is not so obvious. We develop the estimation process in HBS, as this database has 
the original expenditure variable. The expenditure is then imputed for all SILC households.  

This article presents seven different estimation models involving an OLS regression of 
the expenditure in levels, the regression of the expenditure in logs, and different GLM 
alternatives. We propose two estimation techniques for each model: a simple regression and 
a simple regression adding a Chi-squared error term. This latter method increases the 
variance, skewness and kurtosis of the prediction. However, it reduces the estimation’s 
accuracy. 

The paper is structured as follows. Section 2 explains the different estimation techniques 
and reports the estimation results. Section 3 presents the in-sample and out-sample 
predictions. The analysis in sections 2 and 3 leads us to choose the GLM log gamma under 
the Chi-squared procedure as the preferred model for estimating household expenditure in 
order to incorporate the results in the matching process. Section 4 presents the HBS 

                                                
1 This result is a consequence of Jensen´s inequality: “the convex transformation of a mean is less than or equal to 
the mean applied after the convex transformation” (! !(!) ≤ ! !(!) ).  
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estimation and SILC imputation results per expenditure centiles. Finally, Section 5 contains 
the main conclusions.  

 
2. Modelling the HBS household expenditure estimation 
 

This section presents different estimation models and two estimation procedures for 
assessing each method’s pros and cons. The models considered involve the OLS regression 
of the expenditure in levels, the regression of the expenditure in logs, and different GLM 
alternatives. The two estimation procedures involve a simple OLS regression and a simple 
regression adding a Chi-squared error term with zero mean and a standard deviation, 
whereby the new variable has the same standard deviation as the original one. The statistical 
figures computed are the mean, standard deviation, skewness, kurtosis, the Root Mean 
Squared Error (RMSE) and the R2. The estimation results, which include a 1,000 times 
bootstrap estimation, are presented in tables 2.1 to 2.4. The database used is the Spanish 
HBS for 2013.  

The distribution of the household expenditure (the dependent variable in the estimation 
process) presents heavily right-skewed data (Figure 2.1.). The household expenditure median 
is less than the mean (€17,754.8 vs. €20,979.4). The skewness statistic is 2.05 (compared to 
0 for symmetric data), and the kurtosis is 10.95 (compared to 3 for normal data).  

 

Figure 2.1. Household expenditure distribution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: author’s own work based on HBS data. 
 
We start with the simple OLS regression of household monetary expenditure2  (!!) over 

disposable income (!!) and the household-specific dummy variables (!!), which are as 
follows: population density, household members, household type, householder labour status, 
and household tenure. These variables in the matching process need to meet certain criteria: 
they must exist in both the HBS and SILC surveys; they must have the same definition in 
both surveys; they must contribute significantly to explain the total expenditure, and they 
must have similar distributions in both surveys. The variable choice process is explained in 
Appendix 1.  

The OLS model is as follows: 

 

!! = ! + !!!! + !!!!! + !!!!! +  !!!! + !!                            (1) 

 

                                                
2 Monetary expenditure does not include the rental imputed or expenditure from self-supply, self-consumption 
and wages in kind.  
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The OLS regression records a R2 of 45.59, and the errors are highly heteroskedastic (the 
Breusch-Pagan test rejects the hypothesis of homoscedasticity with a Chi-squared statistic of 
1148). One possible way to reduce the heteroskedasticity and treat the high skewness is to 
take the expenditure in logarithms. We then run an OLS regression of the logarithm of 
expenditure over the logarithm of income and the dummy specific variables:  

 

ln (!!) = ! + !!ln (!!) + !!ln (!!)! + !!ln (!!)! +  !!!! + !!                          (2) 

 

Using logs, heteroskedasticity is presented in a smaller dimension (Chi-squared statistic is 
128). However, to include the results in the matching process the estimation results must be 
presented in the scale of interest (euros). As there is still heteroskedasticity, the smearing 
estimate presents a bias in the retransformation process (See Table 2.1). This 
heteroskedasticity can be caused by misspecification due to the exclusion of certain 
important variables. As we have already mentioned, the explanatory variables must meet 
certain conditions if they are to be used in the matching process. Another source of 
heteroskedasticity could arise from survey measurement error. These causes of 
heteroskedasticity cannot be corrected because they are a limitation inherent to the matching 
process. Nonetheless, the smearing estimate cannot be implemented in the matching process, 
as SILC has insufficient information for this, which is computed using the regression 
residuals. The SILC expenditure imputation consists of a deterministic equation using the 
coefficients from the HBS expenditure regression. 

GLMs can be used to avoid the bias in the estimation caused by the retransformation 
problem. Cameron and Trivedi (2009) have defined the GLMs estimators as a subset of 
maximum likelihood estimators. They are generalizations of Non-Linear-Squares that are 
ideally suited to a nonlinear regression model with homoscedastic errors or with some kind 
of heteroskedasticity. GLMs provide a number of estimation alternatives depending on the 
link function and the distributional family specified. The link function refers to the relation 
between the dependent variable and the explanatory variables. The conditional mean 
function Ε !!/!! , !!  in equation 3 is a function of !! independent variables:  

 

Ε !!/!! , !! =  !(!!)                                                                (3) 

 

If a log link is specified, then the previous equation is transformed into:  
 

Ε !!/!! , !! =  exp (!!)                                                             (4) 

 

Distributional family refers to the relationship between the conditional variance and the 
conditional mean:  

!"#[!!/!! , !!] ∝ Ε[!!/!! , !!] !                                                 (5) 

 

The distributional family is determined by the value of !. The most common options are 
as follows: Gaussian (constant variance; ! = 0); Poisson (the variance is linearly related to 
the mean; ! = 1); Gamma (the variance is explained by the square of the mean; ! = 2); 
Inverse Gaussian (the variance is explained by the cube of the mean; ! = 3 ). The 
alternatives studied include log and square root link functions, and Gaussian, Poisson and 
Gamma distributional families.   

GLMs do not suffer from the retransformation problem, and they allow dealing with 
heteroskedasticity through distributional families. The main disadvantage of these models is 
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that the appropriate link function and distributional family need to be used for more accurate 
results. Basu and Rathouz (2005) have extended the standard GLM using Box-Cox 
transformation for the link function and two parameters for the variance to choose the correct 
distributional family:  

 Ε !!/!! , !! = !!!!!
!   !" ! ≠ 0       (6) 

 

Ε !!/!! , !! = log !!  !" ! = 0     (7) 

 

     !"#[!!/!! , !!] = !!Ε !!/!! , !! !!     (8) 

 

This new model is called Extended Estimating Equations (EEE), which avoids the 
problems of misspecification due to the wrong choice of a family distribution or link 
function. The above equations reveal that the GLM options previously defined are special 
cases of EEE. In our case, the estimation of the equation using EEE presents a value of 
! = 0.59 and a value of !! = 1.49. This means that the link function should be a square 
root, and the distributional family is between Poisson and Gamma.  

Tables 2.1 to 2.4 show the comparison of all the models, including the two estimation 
procedures: the simple regression and a regression adding a Chi-squared error term. We call 
the first one the simple procedure, and the second one the Chi-squared procedure.  

The Chi-squared procedure presents a similar bias to the simple regression. This 
procedure’s main advantage is that its moments are closer to the real data. By definition, the 
standard deviation of the Chi-squared estimation is similar to the original expenditure one. 
The skewness and kurtosis of the Chi-squared procedure are greater than the simple 
procedure ones, so they are nearer to the real expenditure data. This holds for all the 
estimation models except for the GLM log gamma, which presents similar skewness and 
lower kurtosis after adding the Chi-squared error term. The drawback of the Chi-squared 
procedure is the loss of precision. The RMSE of the Chi-squared procedure is nearly 40% 
higher (from around 10,600 to around 14,800). In spite of its greater RMSE, we consider the 
Chi-squared procedure to be superior to the simple one, as it produces similar moments in 
the prediction to the original expenditure data. Section 4 explains that the Chi-squared 
procedure is, on average, more accurate for households with lower and higher expenditures.  

The OLS regression of the logarithm of expenditure has an important bias in both 
estimation procedures (Table 2.1.). As we have already explained, this is due to 
heteroskedasticity in the data. The skewness and kurtosis for the OLS regression and the 
GLM log normal of the simple procedure record very low values (closer to the normal 
distribution). These results improve in the case of the Chi-squared procedure. In the simple 
procedure, the GLM log normal and GLM log Poisson have the lowest RMSE. In the Chi-
squared procedure, however, the OLS over the logarithm of expenditure and the GLM log 
gamma have the lowest RMSE. This latter model is the preferred one 
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Table 2.1. Comparison of model specifications (Mean) 

Model 
Mean  		 Bias 

Regression Bootstrap 
1000 	 Regression Bootstrap 

1000 

OLS. Simple Procedure 20,979 20,978   0 -2 

Log OLS. Simple Procedure 21,245 21,242  265 262 

GLM sqrt Gamma. Simple Procedure 21,002 21,002  23 22 

GLM log Gamma. Simple Procedure 21,025 21,024  46 44 

GLM log Poisson. Simple Procedure 20,979 20,978  0 -2 

GLM log Normal. Simple Procedure 20,946 20,944  -34 -35 

EEE. Simple Procedure 20,981 20,979   1 0 

OLS. Chi2 Procedure 20,933 20,982   -47 2 

Log OLS. Chi2 Procedure 21,240 21,246  261 266 

GLM sqrt Gamma. Chi2 Procedure 20,973 21,006  -6 26 

GLM log Gamma. Chi2 Procedure 20,997 21,028  18 49 

GLM log Poisson. Chi2 Procedure 20,950 20,982  -29 2 

GLM log Normal. Chi2 Procedure 20,917 20,948  -63 -31 

EEE. Chi2 Procedure 20,952 20,983   -28 4 

Source: author’s own work based on INE data (2014). 
 
 

Table 2.2. Comparison of model specifications (Standard Deviation) 

Model 
Standard Deviation  		 R2 

Regression Bootstrap 
1000 	 Regression Bootstrap 

1000 
OLS. Simple Procedure 9,815 9,822   0.459 0.459 

Log OLS. Simple Procedure 10,498 10,499  0.525 0.525 

GLM sqrt Gamma. Simple Procedure 10,008 10,011  0.477 0.477 

GLM log Gamma. Simple Procedure 10,230 10,233  0.498 0.499 

GLM log Poisson. Simple Procedure 9,873 9,881  0.464 0.465 

GLM log Normal. Simple Procedure 9,931 9,943  0.470 0.471 

EEE. Simple Procedure 9,883 9,880   0.465 0.465 

OLS. Chi2 Procedure 14,491 14,487   1.000 1.000 

Log OLS. Chi2 Procedure 14,301 14,487  0.974 1.000 

GLM sqrt Gamma. Chi2 Procedure 14,436 14,487  0.992 1.000 

GLM log Gamma. Chi2 Procedure 14,444 14,487  0.994 1.000 

GLM log Poisson. Chi2 Procedure 14,439 14,487  0.993 1.000 

GLM log Normal. Chi2 Procedure 14,439 14,487  0.993 1.000 

EEE. Chi2 Procedure 14,433 14,487   0.992 1.000 

Source: author’s own work based on INE data (2014). 
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Table 2.3. Comparison of model specifications (Skewness, Kurtosis) 

Model 
Skewness  		 Kurtosis  

Regression Bootstrap 
1000 	 Regression Bootstrap 

1000 

OLS. Simple Procedure 0.80 0.80   3.85 3.89 

Log OLS. Simple Procedure 1.14 1.14  5.64 5.64 

GLM sqrt Gamma. Simple Procedure 1.23 1.22  6.73 6.65 

GLM log Gamma. Simple Procedure 1.45 1.44  8.53 8.45 

GLM log Poisson. Simple Procedure 1.12 1.12  5.48 5.45 

GLM log Normal. Simple Procedure 0.95 0.97  4.39 4.50 

EEE. Simple Procedure 1.14 1.13   6.04 5.94 

OLS. Chi2 Procedure 1.34 1.37   6.24 6.65 

Log OLS. Chi2 Procedure 1.30 1.36  6.04 6.40 

GLM sqrt Gamma. Chi2 Procedure 1.44 1.47  6.82 7.07 

GLM log Gamma. Chi2 Procedure 1.49 1.51  7.12 7.35 

GLM log Poisson. Chi2 Procedure 1.43 1.46  6.70 6.92 

GLM log Normal. Chi2 Procedure 1.37 1.40  6.42 6.65 

EEE. Chi2 Procedure 1.43 1.46   6.77 7.03 

Source: author’s own work based on INE data (2014). 
 
 

Table 2.4. Comparison of model specifications (RMSE) 

Model 
RMSE 		 Model Ranking 

Regression Bootstrap 
1000 	 Regression Bootstrap 

1000 
OLS. Simple Procedure 10,673 10,656   3 3 
Log OLS. Simple Procedure 10,703 10,688  5 5 

GLM sqrt Gamma. Simple Procedure 10,711 10,697  6 6 
GLM log Gamma. Simple Procedure 10,719 10,701  7 7 
GLM log Poisson. Simple Procedure 10,649 10,626  2 2 
GLM log Normal. Simple Procedure 10,632 10,608  1 1 
EEE. Simple Procedure 10,695 10,677   4 4 

OLS. Chi2 Procedure 15,118 15,077   7 7 
Log OLS. Chi2 Procedure 14,581 14,635  1 1 
GLM sqrt Gamma. Chi2 Procedure 14,834 14,981  4 4 
GLM log Gamma. Chi2 Procedure 14,698 14,833  2 2 
GLM log Poisson. Chi2 Procedure 14,882 15,018  5 5 
GLM log Normal. Chi2 Procedure 14,832 14,963  3 3 

EEE. Chi2 Procedure 14,904 15,054   6 6 
Source: author’s own work based on INE data (2014). 

 
 
3. The in-sample and out-sample estimation 
 

The aim of this analysis is to determine the most accurate model for the matching 
between HBS and SILC. This section describes a tenfold cross-validation process used to 
test the accuracy of out-sample forecasts. Firstly, the sample is randomly split using a 
uniform distribution into 10 subsamples, of which a single subsample is retained as 
validation data for testing the model, and the remaining nine subsamples are used as training 
data. We estimate the model using the training data (90% of the sample), and predict the 
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household expenditure for the whole sample. The estimated expenditure using the training 
data is called the in-sample prediction. The estimated expenditure using the validation data is 
called the out-sample prediction. Another subsample is then retained as the validation data 
for testing the model; the training data are the remaining subsamples. We repeated this 
dynamic with a different subsample in each case until completing the whole data sample (10 
times). As a result, the out-sample estimation is the same size as the whole sample, and the 
in-sample estimation is repeated nine times for each household, so we take the average 
value.  

Tables 3.1 to 3.4 show the results of the in-sample and out-sample 1,000 bootstrap 
regressions. The statistical figures computed are as follows: the mean, standard deviation, 
skewness, kurtosis, the RMSE and the R2. 

Table 3.1. Comparison of model specifications (Mean) 

Model 
Mean  		 Bias 

In  
sample 

Out 
sample 	

In 
sample 

Out 
sample 

OLS. Simple Procedure 20,978 20,974 		 -2 -5 

Log OLS. Simple Procedure 21,243 21,242 	 264 263 

GLM sqrt Gamma. Simple Procedure 21,002 21,001 	 22 22 

GLM log Gamma. Simple Procedure 21,024 21,023 	 45 44 

GLM log Poisson. Simple Procedure 20,978 20,977 	 -2 -3 

GLM log Normal. Simple Procedure 20,944 20,943 	 -35 -37 

EEE. Simple Procedure 20,979 20,978 		 0 -1 

OLS. Chi2 Procedure 20,977 20,973 		 -2 -6 

Log OLS. Chi2 Procedure 21,242 21,241 	 263 262 

GLM sqrt Gamma. Chi2 Procedure 21,001 21,000 	 22 21 

GLM log Gamma. Chi2 Procedure 21,023 21,022 	 44 43 

GLM log Poisson. Chi2 Procedure 20,977 20,976 	 -2 -4 

GLM log Normal. Chi2 Procedure 20,943 20,942 	 -36 -38 

EEE. Chi2 Procedure 20,978 20,977 		 -1 -2 

Source: author’s own work based on INE data (2014). 
 

Table 3.2. Comparison of model specifications (Standard Deviation) 

Model 
Standard Deviation   		 R2 

In 
sample 

Out 
sample 	

In 
sample 

Out 
sample 

OLS. Simple Procedure 9,822 9,850 		 0.459 0.462 

Log OLS. Simple Procedure 10,499 10,506 	 0.525 0.526 

GLM sqrt Gamma. Simple Procedure 10,011 10,013 	 0.477 0.477 

GLM log Gamma. Simple Procedure 10,232 10,241 	 0.499 0.499 

GLM log Poisson. Simple Procedure 9,881 9,890 	 0.465 0.466 

GLM log Normal. Simple Procedure 9,944 9,950 	 0.471 0.472 

EEE. Simple Procedure 9,879 9,883 		 0.465 0.465 

OLS. Chi2 Procedure 14,478 14,477 		 0.998 0.998 
Log OLS. Chi2 Procedure 14,479 14,478 	 0.998 0.998 

GLM sqrt Gamma. Chi2 Procedure 14,478 14,478 	 0.998 0.998 

GLM log Gamma. Chi2 Procedure 14,479 14,478 	 0.998 0.998 

GLM log Poisson. Chi2 Procedure 14,478 14,478 	 0.998 0.998 

GLM log Normal. Chi2 Procedure 14,478 14,478 	 0.998 0.998 

EEE. Chi2 Procedure 14,478 14,478 		 0.998 0.998 
Source: author’s own work based on INE data (2014). 
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Table 3.3. Comparison of model specification (Skewness, Kurtosis) 

Model 
Skewness  		 Kurtosis  

In 
sample 

Out 
sample 	

In 
 sample 

Out 
sample 

OLS. Simple Procedure 0.80 0.65 		 3.89 9.33 

Log OLS. Simple Procedure 1.14 1.15 	 5.63 5.77 

GLM sqrt Gamma. Simple Procedure 1.22 1.22 	 6.64 6.69 

GLM log Gamma. Simple Procedure 1.44 1.46 	 8.42 8.80 

GLM log Poisson. Simple Procedure 1.12 1.14 	 5.44 5.74 

GLM log Normal. Simple Procedure 0.98 0.99 	 4.51 4.65 

EEE. Simple Procedure 1.13 1.13 		 5.93 6.04 

OLS. Chi2 Procedure 1.37 1.31 		 6.67 8.26 

Log OLS. Chi2 Procedure 1.36 1.36 	 6.42 6.48 

GLM sqrt Gamma. Chi2 Procedure 1.47 1.47 	 7.10 7.14 

GLM log Gamma. Chi2 Procedure 1.51 1.52 	 7.37 7.49 

GLM log Poisson. Chi2 Procedure 1.46 1.47 	 6.95 7.03 

GLM log Normal. Chi2 Procedure 1.40 1.41 	 6.68 6.72 

EEE. Chi2 Procedure 1.46 1.47 		 7.05 7.10 

Source: author’s own work based on INE data (2014). 
 
 

Table 3.4. Comparison of model specifications (RMSE) 

Model 
RMSE 		 Model ranking 

In 
sample 

Out 
sample 	

In 
sample 

Out 
sample 

OLS. Simple Procedure 10,653 10,713 		 3 5 

Log OLS. Simple Procedure 10,685 10,712 	 5 4 
GLM sqrt Gamma. Simple Procedure 10,695 10,715 	 6 6 
GLM log Gamma. Simple Procedure 10,698 10,730 	 7 7 
GLM log Poisson. Simple Procedure 10,623 10,663 	 2 2 
GLM log Normal. Simple Procedure 10,604 10,651 	 1 1 
EEE. Simple Procedure 10,674 10,700 		 4 3 

OLS. Chi2 Procedure 15,062 15,091 		 7 7 
Log OLS. Chi2 Procedure 14,620 14,642 	 1 1 
GLM sqrt Gamma. Chi2 Procedure 14,966 14,986 	 4 4 
GLM log Gamma. Chi2 Procedure 14,818 14,842 	 2 2 
GLM log Poisson. Chi2 Procedure 15,002 15,031 	 5 5 

GLM log Normal. Chi2 Procedure 14,947 14,982 	 3 3 
EEE. Chi2 Procedure 15,039 15,062 		 6 6 

Source: author’s own work based on INE data (2014). 
 

 

The out-sample estimation performs well with all the models, as it has a similar bias, 
skewness and kurtosis to the in-sample. The exception is the OLS model, which records 
greater kurtosis in the out-sample prediction. The standard deviation and the RMSE are 
slightly greater in the out-sample prediction, and the model ranking remains unchanged.  

The out-sample estimation results are similar to the ones reported in the previous section. 
In the simple procedure, the GLM log gamma has the highest skewness and kurtosis, in line 
with the real expenditure data. The remaining models have a high correction of these 
moments with the Chi-squared procedure. The models with the lowest RMSE in the simple 
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procedure are the GLM log Normal and the GLM log Poisson.  In the Chi-squared 
procedure, however, the models with the lowest RMSE are the OLS over the logarithm of 
expenditure and the GLM log gamma.  

As previously explained, we preferred the Chi-squared procedure. The model with the 
lowest RMSE under the Chi-squared procedure is the OLS over the logarithm of 
expenditure. However, this model is rejected because of the high bias. This led us to choose 
the GLM log gamma as the best model for estimating household expenditure and including 
the results in the matching process.   

 
 

4. SILC imputation results  
 

This section presents the HBS estimation and the subsequent SILC imputation of the 
chosen model using the GLM log gamma. Table 4.1 shows the HBS original expenditure 
data moments compared to the imputed SILC expenditure. The mean and standard deviation 
of the SILC imputed expenditure with the Chi-squared procedure are very similar to the 
original expenditure ones. However, skewness and kurtosis are lower in the imputed 
expenditure.  

 
Table 4.1. HBS real expenditure vs. GLM log gamma SILC imputation 

 Mean Standard 
Deviation 	 Skewness Kurtosis 

HBS Real Expenditure 20,979 14,490  2.05 10.95 
SILC Imputation. Simple Procedure 20,964 10,302  1.35 6.75 

SILC Imputation. Chi2 Procedure 20,921 14,572  1.55 7.36 

Source: author’s own work based on INE data (2014, 2015). 
 

Figure 4.1 shows the average centiles of the original expenditure and the GLM log 
gamma estimation via the simple procedure (the variable is called “HBS estimated”) and the 
Chi-squared procedure (the variable is called “HBS estimated CHI”). The simple procedure 
overestimates the original expenditure for lower household spending and underestimates it 
for higher spending. The introduction of the Chi-squared error improves the fit. This 
explains why we have preferred to use the Chi-squared procedure despite the greater RMSE 
observed in the previous section.  

 
Figure 4.1. Average Household Expenditure Centiles. HBS Estimation 

 
Source: author’s own work based on INE data (2014). 
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Figure 4.2 shows the average centiles of the original expenditure and the GLM log 
gamma SILC imputation using the simple procedure (called “SILC imputed”) and the SILC 
imputation using the Chi-squared procedure (called “SILC imputed CHI”). As in the HBS 
estimation, the SILC imputed overestimates the original expenditure for lower household 
spending and underestimates it for higher household spending. The “SILC imputed CHI” has 
a similar shape to the original HBS expenditure.  

 
Figure 4.2. Average Household Expenditure Centiles. SILC Imputation 

 
Source: author’s own work based on INE data (2015). 

 
 
5. Concluding Remarks  
 

There are several ways to match the SILC-HBS surveys. The most common technique 
involves estimating Engel curves using Ordinary Least Squares in logs with HBS data to 
impute household expenditure in the income data set (SILC). The estimation in logs has 
certain advantages, as can it deal with the skewness in data and reduce heteroskedasticity. 
However, the model needs to be corrected with a smearing estimate to retransform the 
results into levels. The presence of intrinsic heteroskedasticity in household expenditure 
requires another estimation technique, as the smearing estimate produces a bias. The 
Generalized Linear Model (GLM) log gamma under the Chi-squared procedure is selected as 
the best option. The paper shows that the estimated HBS and imputed SILC results by 
expenditure centiles are, on average, very close to the original HBS expenditure when the 
GLM log gamma technique is applied. 

 
 
Appendix 1. The choice of explanatory variables  

 
Two types of explanatory variables were used in the estimation process explained in 

section 2, HBS and SILC disposable income and specific household characteristics. Three 
criteria must be met to obtain a consistent and statistically valid merge, being as follows: 1) 
The variables chosen must have the same definition in both surveys; 2) They must 
significantly help to explain the dependent variable - household expenditure; 3) All these 
variables must have similar distributions in both surveys. Even if these conditions are not 
met, disposable income must remain in the process after some adjustments.  

Figure A.1 shows HBS and SILC disposable income grouped by percentiles. HBS 
underestimates the real value of disposable income as reflected by SILC disposable income 
(data collected from the administrative files). SILC average disposable income was €26,154 
in 2013, while for HBS it was €21,800 (see Table A.1). The differences in the income 
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(Figure A.2.) can be explained by a different definition of disposable income or by a 
different method of data collection. Firstly, we adjusted SILC disposable income to present a 
similar definition to the one for HBS disposable income. This new variable, called adjusted 
SILC disposable income, has a similar distribution to the original SILC disposable income 
(Figure A.3.), so the differences are due to different data collection methods. SILC 
disposable income was then rescaled to present a similar mean and variance to HBS 
disposable income (Figure A.4.)3. This new variable is called rescaled SILC disposable 
income, and it was used solely for statistical matching.  
 

Table A.1. HBS and SILC Disposable Income (€) 

Variable Obs. Mean Standard 
Deviation Min. Max. 

HBS disposable income 22,057 21,800 15,277 0 340,032 
SILC disposable income  11,965 26,154 19,928 -27,082 309,796 
Adjusted SILC disposable income 11,965 26,183 20,008 0 360,426 
Rescaled SILC disposable income  11,965 21,800 15,277 1,808 277,010 

Source: INE (2014, 2015) and own elaboration. 
 
The variables representing specific household characteristics must meet the three 

conditions outlined above. We have chosen a number of variables with similar definitions in 
both surveys, which significantly help to explain household expenditure. These variables are 
as follows: population density, household members, household type, householder labour 
status, household tenure, and householder education level. These variables as a whole 
explain the expenditure with a !! of 0.47. 

The Hellinger Distance (HD) 4  was computed to determine whether the specific 
characteristic variables have a similar distribution in both surveys: 

 

!" !,!! = !
!

!!"
!!

− !!"
!!

!
!
!!!                                          (A1) 

 

The variable V is the donor dataset (in our case, HBS), V’ is the recipient (in our case, 
SILC), k is the number of categories of the variable, !!"!!

 is the relative frequency in the donor 

dataset, and !!"!!
 is the relative frequency in the recipient data. It is generally accepted that an 

HD of over 5% should raise concerns about the similarities in the distributions.  

The HD for each variable is presented in Table A.2. The HD is above 5% for three 
variables: householder education level, household type, and householder labour status. The 
householder education level has an extremely high HD (10.5%), and was dropped from the 
regression estimation. However, the remaining variables were kept because the HD is near 
the limit considered (5%).  

  

                                                
3 As in Decoster (2014) for the Belgium case. 
4 See Eurostat (2013) and Donatiello et al. (2014).  
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Table A.2. Sample Descriptive variables: HBS and SILC 

  HBS 
Frequency 

SILC 
Frequency 

Hellinger 
Distance 

Population 
Density 

1. High 51.71% 52.13% 
1.66% 2. Medium 23.70% 21.91% 

3. Low 24.59% 25.97% 

Household 
members 

1. One 24.22% 24.63% 

0.48% 

2. Two 30.45% 30.61% 
3. Three 21.25% 21.07% 
4. Four 17.99% 17.81% 
5. Five 4.63% 4.49% 
6. Six or more 1.46% 1.39% 

Household 
Type 

1. One person aged >65 10.29% 10.39% 

6.40% 

2. One person aged 30-65 12.46% 13.01% 
3. One person aged <30 1.47% 1.23% 
4. Couple with no dependent children, one aged 
>65 

10.21% 13.87% 

5. Couple with no dependent children, both aged 
<65 

12.72% 14.60% 

6. Couple with one dependent child 10.97% 11.26% 
7. Couple with two dependent children 11.53% 11.00% 
8. Couple with three dependent children  2.34% 2.24% 
9. Single-parent with at least one dependent 
child 

2.78% 3.28% 

10. Other households or without information 25.23% 19.12% 

Household 
Tenure 

1. Owner without a mortgage 46.74% 49.66% 

4.50% 
2. Owner with a mortgage 30.54% 28.39% 
3. Renter at market price 15.23% 12.44% 
4. Renter at a reduced price 1.46% 2.49% 
5. Free or nearly free assignment  6.03% 7.02% 

Householder 
Labour Status 

1. Employed 52.81% 54.12% 

5.60% 

2. Unemployed 10.82% 11.04% 
3. Pensioner 27.85% 24.37% 
4. Student 0.18% 0.45% 
5. Homemaker 4.65% 5.59% 
6. Permanent job disability 1.35% 3.24% 
7. Other 2.33% 1.19% 

Householder 
Education 

Level 

1. No education or Primary 17.76% 28.00% 

10.53% 2. Below Upper Secondary 33.43% 22.78% 
3. Upper Secondary 18.69% 17.55% 
4. Tertiary 30.12% 31.67% 

Source: INE (2014, 2015) and author’s own work.
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          Figure A.1. HBS vs. original SILC                                      Figure A.2. Differences between HBS and original SILC 

 
 
 

Source: INE (2014, 2015) author’s own work.
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                   Figure A.3. HBS vs. adjusted SILC                                                          Figure A.4. HBS vs. rescaled SILC 

 
  

Source: INE (2014, 2015) author’s own work.
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