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Abstract

We analyse the properties of classical (fixed e↵ect, first-di↵erences and random e↵ects) as

well as generalised method of moments-instrumental variables estimators in either static or dy-

namic panel data sample selection models. We show that the correlation of the unobserved

errors is not su�cient for non-consistency to arise, but the presence of common (and/or non-

independent) non-deterministic covariates in the selection and outcome equations is generally

necessary. When both equations do not have covariates in common and independent of each

other, we show the consistency of fixed e↵ects and random e↵ects estimators in static models

with exogenous covariates. Furthermore, the first-di↵erenced generalised method of moments

estimator uncorrected for sample selection of Arellano and Bond (1991) as well as the instrumen-

tal variables estimator of Anderson and Hsiao (1982) are consistent for autorregressive models

even with endogenous covariates. The same results hold when theboth equations have no covari-

ates in common but they are correlated, once we account for such correlation. Under the same

circumstances, the system generalised method of moments estimator (Arellano and Bover, 1995,

and Blundell and Bond, 1998) has a moderate bias. Alternatively, when both equations have

covariates in common we suggest the appropriate correction method, being the serial correla-

tion of the errors a key determinant of the choice. The finite sample properties of the proposed

estimators and solutions are evaluated using a Monte Carlo study. We also do two di↵erent

applications to log earning equations for females using the Panel Study of Income Dynamics

and to tobacco consumption models using the Spanish Continuous Family Expenditure Survey.
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1 Introduction

The problems of self-selection, non-response and attrition are common in datasets containing eco-

nomic variables. Their presence generate manageable models in cross-sections. However, correlated

heterogeneity together with endogenous attrition, non-response or selection complicate the mod-

els with unbalanced panel data (Baltagi, 2013). The increasing availability of large longitudinal

databases has produced many studies simultaneously dealing with unobserved heterogeneity and

selectivity. Moreover, the development of new methods make these approaches likely to be used

more frequently in the future. In this context, we believe that it is important to highlight advan-

tages and problems in the performance of di↵erent estimators and to draw researchers’ attention

to potential pitfalls in using them in empirical studies.

In this paper we focus on the estimation of panel data sample selection models. We consider a

variety of cases for the outcome of interest and a simple form, easily generalizable, for the selection

equation. The error components of both equations can be correlated with a very general correlation

structure. Departing from the simplest situation, we present an exercise including all important

features in the model one by one to test their individual and joint e↵ects on the bias of some of the

classical estimators (fixed e↵ects -FE-, random e↵ects -RE-, or first di↵erences -FD-) as well as the

more sophisticated generalized method of moments (GMM) estimators.

In more detail we consider four cases of increasing complexity: (a) panel data sample selection

models without covariates in common and independent of each other; (b) models without covariates

in common but dependent of each of other; (c) models with at least a common covariate and not

serially cross-correlated time-variant errors ; and, (d) models with at least a common covariate and

time variant serially cross-correlated errors.

The first two cases are far less common that the others. They typically involve sample selec-

tion related to involuntary factors, not linked with the individual or firm characteristics (being the

ongoing Covid-19 crisis an excellent example). They imply the determinants of the intensive (the

observability rule) and the extensive (the outcome equation) margins are totally di↵erent. Yet the

unobserved components (time and time-invariant) can be correlated causing endogenous sample

selection. However, as we shall illustrate latter on, under these circumstances sample selection

corrections are not necessary to obtain consistent estimates of the parameters of interest. Alter-

natively, in the last two, most common cases, sample selection correction (a la Heckman) will be

necessary, and, more importantly, will have increasing complexity.

For case (a) we distinguish static and dynamic sample selection models. In the static model

without common (and independent) covariates between the outcome and the selection equation (let

us call them x and z respectively), we show that all the classical (Fixed E↵ects, First Di↵erences and

Random E↵ects GLS, the latter under the additional condition of no correlation of the covariates

with the heterogeneity e↵ect) and GMM (in case of endogeneity of any regressor) estimators are

consistent.

Similarly to the case above, in dynamic models without common time-varying covariates (the
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purely AR(1) as well as the Montecarlo study in Raymond et al (2007), lately applied in Raymond

et al (2010), are paramounts examples of this case) the uncorrected for selection GMM estimator

of Arellano and Bond (AB, 1991) as well as the less e�cient of Anderson and Hsiao (AH, 1982),

are consistent regardless of the exogenous or endogenous nature of the selection.1 Furthermore, we

show that the additional orthogonality restrictions implied by the system GMM estimator (Arellano

and Bover, 1995; Blundell and Bond, 1998) are not valid under endogenous selection. However, the

inconsistency of the system estimator is small and hardly induces bias, even and especially in small

samples, when the time-invariant heterogeneity components in the outcome and selection equations

are not correlated. All these also apply to models with exogenous, predetermined or endogenous

covariates, which are, in turn, not present in the selection equation.

In models without common but correlated covariates (case (b)), we show that still there is no

need to control for the correlation of the time varying errors, provided that, as we shall describe

latter on, we control (instrument) in the outcome equation for relationship between the covariates

in both equations. Our approach will be similar to the Olsen (1980) solution for the least squares

model.

For case (c), that is for models with at least one common covariate2, we propose an extension of

Wooldridge (1995) and Rochina-Barrachina (1999) based in the estimation of year-by-year probits

(although we also suggest some semiparametric alternatives). In static models in levels, we strictly

follow the proposal of Wooldridge (1995) and we correct for selection bias by adding the current

selection term. In first-di↵erenced models and, in general, in dynamic models, the complexity of the

correction critically depends on the serial correlation of the errors. In the simplest case (no serial

correlation and stationarity) we show that can apply and extend Wooldridge’s proposal safely.

Finally, for case (d), when both equations have covariates in common and the time varying errors

are serially cross-correlated, we suggest a multivariate corrections. Interestingly, in models with

predetermined or endogenous covariates the selection terms need to be instrumented accordingly.

Although is not the focus of this paper, testing between the alternative cases described above is

not complicated at all. For example a simple t-test or Wald test allow to check the significance of

x in the selection equation. In case it is not detected, a test of the E(x|z) checks for the necessity

of correcting for the correlation between x and z. Finally, to distinguish between (c) and (d) we

can test the correlation between the time variant errors in the outcome and the lagged (one and

twice if necessary) time variant errors in the selection equations.

The performance of these estimators is evaluated using Monte Carlo methods, relaxing or im-

posing a variety of assumptions. In models without common covariates in the two equations, our

results suggest non-necessity of correcting the classical static estimators or the first-di↵erences

AB estimates in the selected sample. In models with covariates in common, we show that our

suggestions for correction are able to eliminate or significantly reduce the selection bias.

1An immediate implication of this result is that GMM estimators are not consistent in the uncorrected model
when the lagged outcome is part of the selection equation.

2The common covariate can be also the lagged outcome, as in Gayle and Viauroux (2007).
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Our work contributes to the literature in several dimensions. First by showing the non-necessity

to correct for selectivity (even with a high degree of correlation) when both equations do not

have time-varying covariates in common. Second, by suggesting simple methods to correct the

outcome equation when both equations have common covariates. Combining these contributions,

we conclude that the key determinant of the necessity of sample selection correction a la Heckman

is the presence of common covariates and not whether the errors of the selection and outcome

equations are correlated. Overall, we believe that these results could be especially relevant for

practitioners in cases involving sample selection of unknown form, when the selection process is

di�cult to model or when exclusion restrictions are not available.

The rest of the paper contains seven sections in addition to this introduction. Section 2 provides

a review of the literature. Section 3 presents a general framework and the estimation strategies.

Section 4 shows the consistency of many available estimators. The performance of the proposed

estimators is tested in Section 5. Here, we present a Monte Carlo study of the finite sample average

bias of many relevant cases. In Section 6, we present an empirical application, using the same data

of Semykina and Wooldridge (2013, SW) or Lai and Tsai (2016). Finally, Section 7 concludes.

2 Previous literature

The problem of endogenous selection is common in the empirical economic literature using panel

data and it has also received attention in theoretical econometrics models. Starting with Ver-

beek and Nijman (1992), who proposed tests of selection bias either with or without allowance

for correlation between the unobserved e↵ects and explanatory variables, a number of proposals

considering unobserved heterogeneity and selectivity simultaneously have appeared. Some of them,

such as Wooldridge (1995) and Rochina-Barrachina (1999), proposed new methods for estimating

the sample selection model with correction under strict exogeneity. Kyriazidou (1997) corrected for

selection bias using a semiparametric approach based on a conditional exchangeability assumption

and Lai and Tsay (2016) proposed maximum simulated likelihood methods. On the other hand,

Vella and Verbeek (1998), Charlier et al. (2001) and Semykina and Wooldridge (2010) allowed for

endogenous explanatory variables. Finally, Semykina and Wooldridge (2018) proposed estimation

procedures for discrete choice panel data models with selectivity.3

Dynamics appeared for the first time in Arellano et al. (1999), who proposed di↵erent solutions

for estimating dynamic panel data sample selection models. Next, Kyriazidou (2001) extended her

previous proposal to include a lagged dependent variable. More recently, Semykina and Wooldridge

(2013) introduced new two-stage random e↵ects strategies for estimating panel data models in the

presence of endogeneity, dynamics and selection. Note, however, that the validity of Semykina and

Wooldridge’s method is based on the validity of the assumption of correlation of the heterogeneity

components and the initial condition. Because none of the previous papers suggested a preferred,

3In another strand of research, theoretical papers have explored bias-corrected estimators for the static case
(Fernández-Val and Vella, 2011).
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simplified, or dominant method, our aim here is to provide solutions easily applicable from the

point of view of applied practitioners.

Semiparametric alternatives for dynamic panel data sample selection models were studied by

Gayle and Viauroux (2007) and Sasaki (2015). Furthermore, maximum likelihood methods were

explored by Raymond et al. (2007). Note that in the latter case the Montecarlo study is specified

with no common covariates between the selection and the outcome equation. A case we’ll latter

argue that can be estimated with standard uncorrected gmm estimator. Thus with much less

assumption and more flexibility.

The various methods have been applied to a number of empirical studies. Charlier et al.

(2001) studied housing expenditure by households. Jones and Labeaga (2003) selected a sample

of non-smokers using the variable addition test of Wooldridge (1995) and then estimated Tobit-

type models on the sample of smokers and potential smokers using GMM and minimum distance

(MD) methods. González-Chapela (2007) used GMM to estimate the e↵ect of recreational goods

on male labour supply. Winder (2004) used instrumental variables to account for endogeneity of

some regressors in earnings equations for females. Jiménez-Mart́ın (2006) estimated dynamic wage

equations and tested the possibility of di↵erences between strikers and non-strikers. Dustmann

and Rochina-Barrachina (2007) estimated females’ wage equations extending Rochina-Barrachina

(1999). Semykina and Wooldridge (2010, 2013) applied their methods to estimate earnings equa-

tions for females. Raymond et al (2010) apply the maximum likelihood methodology develop in

Raymond et al (2007) to a model of the occurrence of TPP innovations in Dutch manufacturing

enterprises and the extent of these innovations in terms of the share of innovative sales. Knoef

and Been (2015) extend Rochina-Barrachina (1999) to an ordinal sample selection models. In-

terestingly, in the former two cases, the selection and outcome equations have no covariates in

common. Note this is one of the cases we argue there is no need to correct selection to obtain

consistent estimates. Chang and Trivedi (2015) estimate a model of attrition. Finally, Semykina

and Wooldridge (2018) applied discrete choice sample selection panel data models to the analysis

of pension coverage among white females in the US.

Because it is likely these approaches will be used more frequently in the future, we believe

that it is important to highlight properties, advantages and problems of the various methods, as

well as their pitfalls and performance in applied studies. This is precisely what we aim to do in

this paper. In more detail, we analyze the necessity for correcting several estimators in static and

dynamic models (with either fully exogenous, predetermined or endogenous regressors). We show

that corrections are only strictly necessary when both equations have time-varying covariates in

common. For example, in the purely AR(1) case, we show the consistency of the AB estimator (and

implicitly of the AH estimator) applied to the uncorrected equations and we establish a bound for

the system GMM estimator in the worst-case scenario of endogenous selection. Then, we carry out

a Monte Carlo exercise to examine the performance of each method under alternative assumptions.
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3 A general framework

Consider the following class of panel data models with unobserved heterogeneity:

y⇤it = ⇢y⇤it�1 + �xit + ↵i + "it (1)

for i = 1, ..., N and t = 1, ..., T.

where x is a covariate, that can be either exogenous, predetermined or endogenous, and ↵i is

an individual heterogeneous component independent of the idiosyncratic error "it and (assumed for

simplicity) independent of x.4 ⇢ and � are the parameters of interest.

The combination of di↵erent values of ⇢ and � lead to di↵erent models. For example, the

assumption ⇢ = 0 leads to a static panel data model; when |⇢| < 1 and � = 0 we have

a purely stationary AR(1); finally, when both parameters are di↵erent from zero we have an

autoregressive model with covariates.

We assume the following process for x,

xit = ⇢xxit�1 + �x}it + ↵x
i + "xit (2)

where |⇢x| < 1, } is a strictly exogenous covariate, ↵x
i is a heterogeneity component and "xit is a

time-variant error component. In case x is exogenous both error components are uncorrelated with

other errors components in the model; when x is predetermined we allow correlation with "it�1;

and finally, when x is endogenous we allow correlation between the error components in (1) and

(2).

In the case of selection, the variable of interest is partially observed, and it is usual to specify

an observability or selection rule of the form:

d⇤it = zit� + �xit + ⌘i + uit (3)

where ⌘i is a term capturing unobserved individual heterogeneity, zit is a vector of strictly

exogenous regressors including a constant and x is a regressor(s), assumed to be independent of z,5

that may appear also in the outcome equation.6 We assume that z and x do not have variables in

common and so, we can assume z are exclusion restrictions. For convenience we also assume that

x has been cleaned of any correlation with ⌘i.7 Note that in case � = 0 the selection equation has

no variables in common with the outcome equation. Finally uit is an error term. The observed

indicator dit is given by:

4Except for the case of the random e↵ects estimator in static models, all the key results of the paper remain
unaltered in case we allow x and ⌘

i

to be correlated.
5The implications of not being independent are the same as the implications of both being in the selection equation.
6We also allow the case where x is the lagged outcome y

t�1. While this makes identification more di�cult, it fits
well on our general argument.

7For example, we can assume ⌘

i

= g(x
i

) and then add this function as an additional regressor(s).
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dit = 1[d⇤it > 0] = 1[zit� + �xit + ⌘i + uit > 0] (4)

in a way such that dit = 1 if y⇤it is observed and zero otherwise.8

The error components in equation (1) are related to the error components in the selection

equation as follows:

↵i = ↵0
i + ✓0⌘i (5)

"it = "0it + #0uit + #1uit�1 + #2uit�2 (6)

where, for simplicity, ↵0
i and "

0
it are assumed to be normally distributed and ✓0 and #j ; j = 0, 1, 2

are the parameters introducing correlation. In the case that they are all zero, there is exogenous

sample selection. Alternatively, when any of them is di↵erent from zero, there is endogenous sample

selection. We distinguish two cases: A) the contemporaneous correlation case, when #0 6= 0 and

#j = 0; 1, 2; and, B) the more complex case of serial cross-correlation, when #j 6= 0; j = 0, 1, 2.

It is well known that in the absence of endogenous selection and for the typical situation of

N large and T small, the outcome equation can be estimated with standard classical or, when

necessary, IV methods. In the static case, (⇢ = 0), with exogenous regressors, any FE and RE

estimator is consistent under the maintained assumption that ↵i and x are not correlated. Alter-

natively, when the model is static and x is predetermined or endogenous or the model is dynamic,

IV estimators are generally needed. For example, the purely AR(1) model or the dynamic model

with covariates are usually estimated by IV, as firstly introduced by Anderson and Hsiao (1982).

Arellano and Bond (1991), among others, proposed a more e�cient GMM estimator, while Arellano

and Bover (1995) extended the previous approach to include equations in levels and proposed the

estimation of the whole model using system GMM. Blundell and Bond (1998) extended Arellano

and Bover (1995) and noted that in the case of an AR(1) with highly persistent time series correla-

tion, first-di↵erencing could lead to a weak instruments problem (see Roodman, 2009). Then, the

use of equations in levels could become important to improve e�ciency.

3.1 Estimation under sample selection

3.1.1 The static model case, ⇢ = 0

Estimation in levels: Equation (1) could be estimated in levels by RE. A su�cient condition

to consistently estimate the parameters of interest is:

E(↵i + "it|xit, dit = 1) = E(↵i|xit, dit = 1) + E("it|xit, dit = 1) = 0 8t (7)

8Since we will focus on the properties of the estimators for the outcome equation, sometimes we will also exclude
⌘

i

from (4).
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As a general rule, RE estimates on the selected subsample are inconsistent if selection is non-

random, and/or if there is correlated individual heterogeneity.

Estimation in time di↵erences: A su�cient condition for OLS to be consistent using di↵er-

ences (or the fixed e↵ect transformation) across time is:

E("it � "it�s|xit, xis, dit = dis = 1) = 0, s < t (8)

Since condition (8) sets no restrictions on how the selection mechanism or the regressors relate

to, di↵erencing (1) across time does not only eliminate the problem of correlated individual hetero-

geneity but also any potential selection problem which operates through. If condition (8) is satisfied,

the OLS estimator on the model in time di↵erences provides consistent estimates. Alternatively, if

this condition is violated consistent estimation requires considering the selection process.

3.1.2 The AR(1) model

In the small T dynamic case, IV methods are in general necessary.9 As pointed above, we consider

the following estimation options: 2SLS-IV (AH: Anderson & Hsiao, 1982) and, more generally,

GMM (AB: Arellano & Bond, 1991; System: Arellano & Bover, 1995; Blundell & Bond, 1998). All

of them imply first di↵erencing the data (and combine the estimation using also the equations in

levels in the case of the system estimator) and use of internal instruments lagged at least twice,

which implies that the selected sample is conditional on observing the outcome for at least three

consecutive periods (dit, dit�1, dit�2 = 1).

Under this condition, for the AH and the AB to be consistent, we need the following orthogo-

nality condition to hold:

E(�"ityit�2/zit, dit = dit�1 = dit�2 = 1) = 0 (9)

which is stronger than the sample condition imposed in the standard case. Note that when this

restriction holds, it also holds for t � 3 and backward lags. For the equation in levels, and so, for

the consistency of the system estimator, we need the following condition:

E((↵i + "it)�yit�1/zit, dit = dit�1 = dit�2 = 1) = 0 (10)

which is also stronger than in the general case.

Our initial guess, based on previous work by Arellano et al. (1999), is that because the final

estimating sample is selected on positives for at least three consecutive previous periods, the need

to correct is greatly reduced.10

9When T is su�ciently large, we can consistently estimate the parameters of the model using the within-groups
estimator (see Nickell, 1991).

10Arellano et al. (1999) proposed the estimation of sample selection models conditioning on exogenous positive
past outcomes and showed that the degree of selection is significantly reduced in economic models with persistence.
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3.2 Estimation under endogenous sample selection

In the presence of endogenous sample selection, researchers are tempted to proceed analogously

to the standard static case described by Wooldridge (1995). First, to correct the problem of

endogenous selection induced by the correlation of the errors in both equations, and then, to

estimate the model. However, as we will show next, there are two distinct cases:

A. When there is some feedback between the (time variant non-deterministic) covariates11 in

the outcome and the selection equation. However, the necessity of correction varies with the

sampling condition and the correlation structure of the errors in both equations. We consider

two cases:

A1 Contemporaneous correlation: #0 6= 0 and #j = 0; j = 1, 2;

– Step 1. Following Wooldridge (1995), we estimate year-by-year probit models and

compute univariate correction terms (Heckman’s lambda).

– Step 2. Add the appropriate selection terms as additional regressor(s) to the rel-

evant outcome equation. In Appendix A we show that when the errors are not

serially correlated univariate corrections are su�cient regardless of the observability

condition: one observation in static level models (see equation 72 in the Appendix

A), two (first-di↵erenced static models, see Rochina-Barrachina, 1999) and three

(dynamic models, equation 69 in the Appendix A) consecutive observations. We

estimate the equation of interest including the appropriate correction(s) using one

of the alternative methods described in Table 1.

For example, in the case of estimation of the AR(1), the sample has to be selected in

three consecutive periods to have a usable observation in the current period. Then,

the appropriate correction involves the current lambda in the equation in levels and

the first-di↵erenced lambda in the first-di↵erenced equation (as in Jiménez-Mart́ın,

1999, 2006). Under contemporaneous correlation, standard software can be used

(see, for instance, Roodman, 2006). Corrected standard errors need to be computed

anyway. This can be done by means of the delta method or bootstrapping.12

A2. Longitudinal correlation: #j 6= 0; j = 0, 1, 2;

– Step 1. When the correlation structure of the errors is complex, a more sophis-

ticated bivariate or trivariate correction is required, either in static models with

endogenous regressors or in dynamic models. Following Rochina-Barrachina (1999)

and Jiménez-Mart́ın et al. (2009), we propose (see Appendix A) estimating bivariate

and trivariate probits models of, respectively, the probability that dit = dit�1 = 1

and dit = dit�1 = dit�2 = 1.

11When the common covariates are deterministic or time-invariant there will be no necessity to correct estimates
in first-di↵erences and little necessity to correct estimates in levels.

12See Appendix C for a proposal to correct the variance of the corrected GMM estimators following Terza (2016).
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– Step 2. Under stationary correlation and exchangeability (Kiriadizou, 1997), the

first-di↵erenced equations require two correction terms obtained, under normality,

from the previous estimated trivariate probit model (equation 68 in Appendix A).

Alternatively, the equation in levels require also two correction terms but, in this

case, obtained in a bivariate probit (equation 71 in Appendix A). Note that, since

the equations in first di↵erences and levels require di↵erent corrections, standard

software is not appropriate for obtaining the corrected system estimator, but we

suggest to use, for instance, the Stata gmm routine.

B. When there is no feedback between the outcome and the selection equations, i.e., when x?z

and x is not part of the selection equation.13 In this context the following results hold:

Result 1: Under endogenous selection and absence of feedback from the outcome equa-

tion to the selection equation it is feasible to show that the AH and the AB estimators

are both consistent. This is so because for the AB

E[�✏ityit�k|dit, dit�1, dit�2 = 1] = 0; k > 1

and, for the AH

E[�
X

t

✏ityit�2|dit, dit�1, dit�2 = 1] = 0

Furthermore, the AH and the AB estimators are consistent in the model with either

exogenous, predetermined or endogenous covariates. An implication of Result 1 is that

it applies to the case in which a deterministic or time-invariant covariate x is included

in the selection equation.

Result 2: Under the same conditions above (correlation of the time-variant and time-

invariant error components) the system estimator is not consistent since

E[✏it�yit�1|dit, dit�1, dit�2 = 1] 6= 0

However, the implied bias is small (especially when the individual heterogeneous compo-

nents are not correlated) and so, in small samples we are still going to prefer the system

estimator. In the model with covariates, the system estimator has a small bias under

the same condition, regardless of the nature of the covariates.14

13This is the case of the purely AR(1) model as well as models of attrition or missing variables where the reason
for selecting the sample is correlated with the object of study but unrelated to other determinants of the model.
However, there are many empirical exercises where these assumptions are not going to be maintained as labor supply
models, wage equations, estimation of wage di↵erentials, etc.

14Follow-up to result 2: In case we like to correct the bias of the system estimator, we need to correct for selection
only the equation in levels. If the correlation between the time-invariant error components is zero and there is no
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Result 3: The previous results can be extended to static panel data models regardless of

the nature of the covariates. This implies that, when there is not feedback between the

outcome and the selection equations (x?z and x is not part of the selection equation),

we can recover consistent estimates using either FE, FD or RE (GLS) methods (the

latter providing consistent estimates if cov(x,↵i) = 0).

Result 4: When x is not present in the selection equation but is not independent from

z is it still possible to avoid bias correction a la Heckman by accounting for the relation

between x and z, say E(x|z) in the outcome equation.

In Table 1 we summarize all the cases considered and the suggested solutions. We distinguish

four static cases and five dynamic models. As we show in the next section, when there are no

covariates in common between both equation and they are independent, there is no necessity to

correct the static estimators and some of the dynamic ones (AH and AB). In case they are not

independent a control function approach (based on the E(x|z)) can account for any potential bias

induced by the selection process. Alternatively, when at least a time-varying covariate is included

in both equations sample selection corrections (either univariate or multivariate, depending on the

serial cross-correlation of the errors) are required to get consistent estimates.

Table 1: Models considered under endogenous sample selection: cases and solutions1

Model AR x in x x in Correction Estimation
param outcome endog selection needed methods

Static ⇢ = 0 Yes No No No FE, RE(GLS)2, FD
Static ⇢ = 0 Yes Yes No No FD-IV, FD-GMM
Static ⇢ = 0 Yes No Yes Yes FE, RE(GLS)2, FD
Static ⇢ = 0 Yes Yes Yes Yes FD-IV, FD-GMM, OTHER
AR(1) |⇢| < 1 No — nr No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes No No No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes Yes No No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes No Yes Yes FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes Yes Yes Yes FD-IV, FD-GMM

Notes.

1. We assume x?z. When this assumption does not hold and x is not present in the selection equation we

will follow a control function approach to account for this correlation.

2. Consistency of the GLS estimator requires the extra assumption of absence of correlation of x with the

heterogeneity component in the outcome equation.

feedback between both equations, the bias of the system estimator is small (but not zero). So, when the AB estimator
does not work well (small N , large autoregressive coe�cient), the system estimator is highly recommended.
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4 Consistency under endogenous sample selection

In this section we analyze the consistency of potential estimators as a function of a key factor: the

presence of common time-varying covariates in the outcome and selection equations.

We show that many standard estimators are consistent regardless of the correlation between the

errors in the selection and the outcome equations when there are no common covariates between the

selection and the outcome equations. For example, for dynamic models the AH and AB estimators

are consistent when the outcome and selection equation have no regressors in common, i.e., when

all the regressors in the selection equation are exclusion restrictions. The system estimator is an

exception and presents a small bias, mainly induced by the correlation between the time-invariant

heterogeneous components in the outcome and the selection equations.

4.1 Consistency in the pure autoregressive model

Let us start with a minor modification of the AR(1) model presented in equations (1) and (2) to

be more precise with the assumptions:

y⇤it = ↵i + ⇢0y
⇤
it�1 + "it (11)

dit = 1(⌘i + �0zit + uit > 0) (12)

↵i = ↵0
i + ✓0⌘i (13)

"it = "0it + #0uit (14)

The exogenous random variables zit, ↵0
i , "

0
it, ⌘i, and uit are assumed to be i.i.d. and independent

of each other with finite second moments.15 We assume that |⇢| < 1 and y⇤it is the stationary causal

solution to the AR(1) model, y⇤it =
↵
i

1�⇢0
+
P1

j=0 ⇢
j
0"it�j . We also assume that E("0it) = E(uit) = 0.

The observed data is the set of y⇤it for which dit = 1.16

Let�"it(⇢) = �y⇤it�⇢�y⇤it�1. The natural moment conditions to consider would be E(y⇤is�"it(⇢)) =

0 for s + 2  t i↵ ⇢ = ⇢0. However, because y⇤it is not always observed, the moment cannot be

estimated. The next best option is to try to show E(sisty⇤is�"it(⇢)) = 0 i↵ ⇢ = ⇢0, where sist is

defined as

sist = ditdit�1dit�2dis (15)

Thus, sist = 1 if and only if all y⇤is and �"it(⇢) are observed. Now, write

15We omit x from the selection equation due to its irrelevance for the properties of the estimates in the purely
AR(1) case.

16We include the lagged latent variable y

⇤
it�1 in the right-hand side of the outcome equation, but the reasoning is

also valid for the lagged observed variable y

it�1.
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E(sisty
⇤
is�"it(⇢)) = E(sisty

⇤
is(�y⇤it � ⇢�y⇤it�1)) (16)

= E(sisty
⇤
is(⇢0�y⇤it�1 +�"it � ⇢�y⇤it�1)) (17)

= (⇢0 � ⇢)E(sisty
⇤
is�y⇤it�1) + E(sisty

⇤
is�"it) (18)

Identification requires that E(sisty⇤is�y⇤it�1) 6= 0 and E(sisty⇤is�"it) = 0. The former condition

can be assumed, while the latter requires some work to show. A classical su�cient condition

that ensures exogeneity is E(�"it|sist, y⇤is) = 0. However, because �"it, sist, y⇤is are related in

a complicated way, it is not feasible to verify this condition in our context. A simpler su�cient

condition derived in the Appendix A is the following

E(ditdit�1dit�2�"it|dis, y⇤is) = 0 (19)

To see that this condition holds, substitute into �"it and write

E(ditdit�1dit�2�"it|dis, y⇤is) = E(ditdit�1dit�2(�"
0
it + #0�uit)|dis, y⇤is) (20)

= E(ditdit�1dit�2#0(uit � uit�1)|dis, y⇤is) (21)

because �"0it is independent of dit, dit�1, dit�2, dis, and y⇤is and therefore it is independent of

dit, dit�1, and dit�2, conditionally on dis and y⇤is. Now, conditioning additionally on ⌘i and dit�2,

E(ditdit�1dit�2�"it|dis, y⇤is) = #0E(dit�2E(ditdit�1(uit � uit�1)|⌘i, dit�2, dis, y
⇤
is)|dis, y⇤is) (22)

notice that ditdit�1(uit � uit�1) is independent of dit�2, dis, and y⇤is conditionally on ⌘i. There-

fore, E(ditdit�1(uit � uit�1)|⌘i, dit�2, dis, y
⇤
is) = E(ditdit�1(uit � uit�1)|⌘i). It su�ces then to show

that E(ditdit�1(uit � uit�1)|⌘i) = 0. Using conditional independence again, we obtain

E (ditdit�1(uit � uit�1)|⌘i) = E (ditdit�1uit|⌘i)� E (ditdit�1uit�1|⌘i) (23)

= E (dituit|⌘i)E (dit�1|⌘i)� E (dit|⌘i)E (dit�1uit�1|⌘i) = 0 (24)

because E (dituit|⌘i) = E (dit�1uit�1|⌘i) and E (dit|⌘i) = E (dit�1|⌘i) by the identical distribut-

edness assumption. We have proven that

E(sisty
⇤
is�"it(⇢)) = (⇢0 � ⇢)E

�
sisty

⇤
is�y⇤it�1

�
(25)
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Thus, we will have identification if and only if E
�
sisty

⇤
is�y⇤it�1

�
6= 0, that is, the same identifi-

cation restriction as in the AB setting, except that here attention is restricted to observed data.

4.1.1 Bound on the bias of the system estimator for the purely AR(1) model

Consider the infeasible level moment conditions E((y⇤it�⇢0y⇤it�1)�y⇤it�1) = 0. The feasible analogue

for the moment on the left hand side is E(ditdit�1dit�2(y⇤it�⇢0y⇤it�1)�y⇤it�1); dit = dit�1 = dit�2 = 1.

However, we have verified in Monte Carlo experiments that it is not generally equal to zero in our

model. Simulation exercises show that this expectation is, for all reasonable combination of the

parameters of the model, very small (see Table A.1 for an illustration) and so is the induced bias.

To be added: Bias of the system estimator in dynamic models

4.2 Consistency in the dynamic model with covariates when � = 0

4.2.1 An exogenous covariate

We extend the previous AR(1) model to a model with a single exogenous covariate not included in

the selection equation. The result can be straightforwardly generalised to many covariates.

y⇤it = ↵i + ⇢0y
⇤
it�1 + �00x

⇤
it + "it (26)

dit = 1(⌘i + �0zit + uit > 0) (27)

↵i = ↵0
i + ✓0⌘i (28)

"it = "0it + #0uit (29)

The exogenous random variables x⇤it, zit, ↵
0
i , "

0
it, ⌘i, and uit are assumed to be i.i.d. and in-

dependent of each other with finite second moments.17 We assume that |⇢| < 1 and y⇤it is the

stationary causal solution to the AR(1) model, y⇤it =
↵
i

1�⇢0
+
P1

j=0 ⇢
j
0(�

0
0x

⇤
it+"it�j). We also assume

that E("0it) = E(uit) = 0. The observed data is the set of y⇤it and x⇤it for which dit = 1.

Now, define �"it(⇢,�) = �y⇤it � ⇢�y⇤it�1 � �0�x⇤it and write

E(sisty
⇤
is�"it(⇢,�)) = (⇢0 � ⇢)E(sisty

⇤
is�y⇤it�1) + (�0 � �)0E(sisty

⇤
is�x⇤it) + E(sisty

⇤
is�"it) (30)

E(sivtx
⇤
iv�"it(⇢,�)) = (⇢0 � ⇢)E(sivtx

⇤
iv�y⇤it�1) + (�0 � �)0E(sivtx

⇤
iv�x⇤it) + E(sivtx

⇤
is�"it) (31)

It is clear that identification requires that for some t and some v, the matrix

"
E(sisty⇤is�y⇤it�1) E(sisty⇤is�x⇤it)

E(sivtx⇤iv�y⇤it�1) E(sivtx⇤iv�x⇤it)

#

17We use x⇤
it

to note that, even in the case of assuming exogeneity, the covariate could also be partially unobserved.
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is non-singular.

We have already shown that E(sisty⇤is�"it) = 0. It remains to show that E(sivtx⇤iv�"it) = 0.

Now,

E(sivtx
⇤
iv�"it) = E(ditdit�1dit�2divx

⇤
iv(�"

0
it + #0�uit)) (32)

= E(ditdit�1dit�2divx
⇤
iv#0�uit) (33)

= E(dit�2divx
⇤
iv#0E(ditdit�1�uit|⌘i, dit�2, div, x

⇤
iv)) (34)

= E(dit�2disx
⇤
iv#0E(ditdit�1�uit|⌘i)) (35)

= 0 (36)

The first equality follows from the independence of "0 from all other variables. The second

equality is obtained by conditioning on predetermined variables. The third equality follows from the

conditional independence of ditdit�1�uit from (dit�2, dis, xis) conditional on ⌘i. The final equality

has already been established above.

4.2.2 A predetermined covariate

Now, suppose that x⇤ is predetermined so that x⇤it is independent of "
0
it+1, "

0
it+2, . . ., uit+1, uit+2, . . .,

and zit+1, zit+2, . . . but not necessarily independent of contemporaneous or past values of these

variables. Then, exogeneity may still be satisfied if v  t � 2 in the above calculations. If we can

further assume that xiv is independent of "iv, uiv, and ziv, then exogeneity will be satisfied with

v = t� 1 as well.

4.2.3 An endogenous covariate

Finally, suppose x⇤ is endogenous and we have at our disposal a vector of instruments ⇠. Then, we

may use the following moment conditions

E(sisty
⇤
is�"it(⇢,�)) = (⇢0 � ⇢)E(sisty

⇤
is�y⇤it�1) + (�0 � �)0E(sisty

⇤
is�x⇤it) + E(sisty

⇤
is�"it) (37)

E(sit⇠i�"it(⇢,�)) = (⇢0 � ⇢)E(sit⇠i�y⇤it�1) + (�0 � �)0E(sit⇠i�x⇤it) + E(sit⇠i�"it), (38)

where sit = ditdit�1dit�2. Thus, we need

"
E(sisty⇤is�y⇤it�1) E(sisty⇤is�x⇤it)

E(sivtx⇤iv�y⇤it�1) E(sivtx⇤iv�x⇤it)

#

to be non-singular, and we need E(sisty⇤is�"it) = 0 and E(sit⇠i�"it) = 0.
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4.3 Consistency in the static model

All the aforementioned results hold when ⇢ = 0 and x?z. In particular when x is exogenous, there

is no need to use an IV strategy and either the FE, FD or RE (GLS) estimators are consistent

provided cov(↵i, xit) = 0. The proofs for the FE and FD estimators follows straightforwardly, but

we need to justify it for the RE estimator. The expression for the static model without covariates

in common is:

y⇤it = ↵i + �xit + "it (39)

dit = 1(⌘i + �0zit + uit > 0) (40)

where x?z. Estimation of the uncorrected RE is carried out in the following selected sample:

y⇤it = ↵i + �xit + "it if dit = 1 (41)

where, under endogenous selection, E(↵i + "it|dit = 1) = 0, provided that x?z, then x is

independent of any transformation of z, in particular �(z). So, omission of the sample selection

correction term does not a↵ect the consistency of the estimate of � (although it a↵ects the standard

errors).18

4.3.1 Consistency when x 6? z

As an extention of the case above, we consider the case in which x is not present in the selection

equation but x 6? z. We’ll show that the uncorrected estimators are still consistent provided we

control for the relation between x and, say, z0, the covariates in z that have some relationship with

x. So, let us consider the following control function approach in the spirit similar to Olsen’s (1980)

solution for sample selection in static models.

Consider z0 2 z such that cov(x, z0) 6= 0. Then, under very standard assumptions, adding

E(x|z0) [or more generally E(x|z)] to the outcome equation corrects the bias of the parameter

of x.

So, for the case of the static model estimated in levels described , we adjust equation 41:

yit = �0xit + �E(xit|zit) + ↵i +mit if dit = 1

where mit = "it + �E(xit|zit)

A simple test of the coe�cient of E(x|z), �, evaluates the necessity of the correction.

18Note that this result also applies to cross-sectional analyses.
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Finally, note this result can be applied to all models, either static or dynamic, in which the

covariates in both equations are distinct but not independent.

4.4 Consistency in panel data sample selection models when � 6= 0

When at least a covariate is included in both the outcome and the selection equations, the un-

corrected estimator is biased in the presence of endogenous sample selection. As suggested by

Wooldrigde (1995), bias correction induced by endogenous sample selection implies adding uni-

variate corrections if the sample is conditional on only one observation (random e↵ects strategy

in the static model). In Appendix B we show that Wooldrige’s strategy can be extended to sam-

ples conditional on two observations (first-di↵erenced models) and even to samples conditional on

three consecutive observations (dynamic models) if the correlation structure is stationary and the

time-variant errors are only contemporaneously correlated.

Alternatively, when these conditions fail to hold, as shown in Appendix B, we have to add

bivariate corrections obtained from a bivariate probit model (first-di↵erenced in static models and

level equations in dynamic models) or from a trivariate probit model (first-di↵erenced in dynamic

models).

4.4.1 The correction procedure

We describe the correction procedures in two steps:

Step 1. Estimation of the corrections

(i) Errors contemporaneously correlated only under stationary correlation. Un-

der the assumption of normality of the errors in the selection equation, we estimate

year-by-year probit models following the Mundlak/Chamberlain/Wooldridge approach

and compute univariate correction terms. When x is fully exogenous, the specification

includes the covariates z and x 19. Alternatively, when x is endogenous we replace x

with current and lagged values of z.

(ii) Serially cross-correlated errors. We estimate bivariate probit models to correct

equations in levels and first-di↵erences static models, or trivariate probit models to

correct dynamic models.20 See Appendix B for details.

Important Results: A follow up from cases where there is no need to correct is the

fact that omission of any regressor in the selection equation, z0 2 z, such that z0?x, does

not a↵ect the consistency of the corrected estimates. An immediate implication of

this result is that the selection equation can be misspecified in some cases.

19recall we do not allow correlation between x and the heterogeneity component of the selection equation. Otherwise
we will follow Mundlak’s approach to correct the problem

20The order of the appropriate correction increases accordingly in AR(p) models.
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Step 2. Estimation of the outcome equation

(i) Errors contemporaneously correlated only. In this case, all the estimators con-

sidered in this paper (FE, FD, RE, for the static model, and AH, AB, system for the

dynamic model) require corrections derived after adjusting univariate year-by-year pro-

bits.

In the RE and level equations of the system estimator the corrections are introduced

in levels. In first-di↵erenced models, the corrections are introduced in first-di↵erences.

Finally, in the FE estimator, the correction is introduced in within-di↵erences.

For example, under the assumption that xit ? ⌘i, for level and first-di↵erences equations

in the dynamic case we have (see Appendix B for details and notation):

yit = ⇢yit�1 + xit� + �� (Hit) + eit (42)

�yit = ⇢�yit�1 +�xit + �̄(� (Hit)� � (Hit�1)) +�eit (43)

where Hit = zit� + �xit ++z̄i✓ and eit = "it + � (Hit)

(ii) Serially cross-correlated errors under stationary correlation. In this case, the

number of periods an observation is conditional on is critical in determining the ap-

propriate correction. As described in Appendix B, in static models estimated by GLS

we only need to add a single correction; in static models estimated by FD we need to

add two correction terms obtained from a bivariate probit (evaluating the expectation

of the first-di↵erenced error conditional on two errors of the selection equation). In

dynamic models estimated using the AH or the AB estimator, we need to add at least

two correction terms obtained from a trivariate probit (evaluating the expectation of

the first-di↵erenced error conditional on the errors of the selection equation in the cur-

rent, lagged and lagged twice periods). Finally, when obtaining the system estimator

we combine the solution for the AB estimator (trivariate corrections) with the solution

o↵ered for the level model estimated in first di↵erences. This means that the correction

to the level and first di↵erenced equations is not the same, so the estimator cannot be

obtained using standard software (for examples, xtabond2).

As a matter of example, we show the corrections needed for the system estimation (see

Appendix B for a description of the notation). 21

yit = ⇢yit�1 + xit� + w̄i + �0� (Hit, Hit�1, %t,t�1) + ��1� (Hit�1, Hit, %t,t�1) + eit (44)

21Note that when x is endogenous the corrections need to be instrumented using the same lag order used to
instrument the covariate.
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�yit = ⇢�yit�1 +�xit + �̄(� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

�� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2))

+�̄�2� (Hit�2, Hit�1, Hit, %t,t�1, %t,t�2, %t�1,t�2) +�eit

(45)

where %t,t�s denotes the correlation between errors in period t and t�s and the function

involving H and % (the selection corrections) are defined in appendix B.

In all cases, it is necessary to compute corrected standard errors. This can be done by means

of the delta method or bootstrapping.22 Finally, a standard t-test of significance of the correction

term (or a Wald test, in case of multiple lambda’s) stands for an approximate test of endogenous

selection (Wooldridge, 1995).

4.4.2 Construction of the corrections

Univariate corrections For a typical static selection model, as described in equation (2), and

assuming, for simplicity, normality of ⌘i + uit = ⌫it, we estimate a probit for each period and then

compute the well-known selection term �̂it(zit�̂). When we allow correlation between zit and ⌘i, we

can rely on Mundlak (1978) and assume, for instance, ⌘i = z̃i', where z̃i is the vector of individual

means of zit, and we, again, can estimate a probit for each period and compute �̃it(zit�̃ + z̃i'̃),

which is then introduced in a second step as before.23

Bivariate or trivariate corrections Assuming the errors ⌫it, ⌫it�1, ⌫it�2 are jointly normal we

can estimate bivariate or trivariate probits in order to construct the bivariate and the trivariate

correction. See the Appendix B for the details.

More general corrections In Appendix B we describe semiparametric estimates of the correc-

tion than can overcome the failure of, for instance, the normality assumption.

5 Monte Carlo experiments

For the Monte Carlo experiment, we consider the following data-generating processes. First, we

assume the following model for the selection equation:

22See the Appendix C.
23In the case of a dynamic selection equation, the lagged observed regressor is correlated with the random e↵ect

by construction. If this is the case, we need to rely either on Mundlak’s proposal or on a less restrictive one such
as that of Chamberlain (1984). In the latter case, we can assume ⌘

i

= ⇡1zi1 + ⇡2zi2 + ... + ⇡

T

z

iT

and recover
the corresponding selection terms. However, strictly speaking, to recover the structural parameters of the selection
equation, we should estimate a probit model for each year based on a reduced form, where d

⇤
it

is a function of all
exogenous variables (the z

0
s) and we predict the index d̂

⇤
it

. Then, in a second stage, we estimate the structural
parameters by within-groups, MD or GMM and compute the correction terms based on these two-stage coe�cients
(see Bover and Arellano, 1997, or Labeaga, 1999). However, to keep the exercise as simple as possible, we compute
the selection terms using reduced-form estimates for each period.
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d⇤it = a� zit � �xit � ⌘i � uit (46)

dit = 1[d⇤it > 0] (47)

where a is set so p(d⇤it > 0) = 0.85 and zit ⇠ N(0,�z) with �z = 1. Second, the outcome of

interest is generated as follows:

y⇤it = (2 + ↵i + "it)/(1� ⇢) if t = 1 (48)

y⇤it = 2 + ⇢y⇤it�1 + �xit + ↵i + "it if t = 2, ..., T (49)

yit = y⇤it if dit = 1 (50)

We let ⇢ vary between 0 (static model), 0.25, 0.50 and 0.75. We generate all variables for T = 1

to T = 20 and discard the first 13 observations to minimise any problem with initial conditions.24

We consider the following process for x:

xit = (0.5 + }it + ↵x
i + "xit + (↵i + "it))/2 if t = 1 (51)

xit = 0.5 + 0.5xit + }it + ↵x
i + "xit + (↵i + "it) if t > 1 (52)

and we let  varying so that: (i) when  = 0, x is fully exogenous; alternatively, (ii), alternative

whe  = 0.5, x is either endogenous or predetermined (in which case "it is replaced by "it�1)

Finally, we assume the following structure for z, } as well as the errors:

}it ⇠ N(0,�}) with �} = 1 (53)

zit ⇠ N(0,�z) with �z = 1 (54)

⌘i ⇠ N(0,�⌘) with �⌘ = 1 (55)

uit ⇠ N(0,�u) with �u = 1 (56)

↵i = ↵0
i + 0.5⌘i,↵

0
i ⇠ N(0,�↵0) with �↵0 = 1 (57)

"it = "0it + #0uit + #1uit�1 + #2uit�2, "
0
it ⇠ N(0,�"0) with �"0 = 1 (58)

↵x
i ⇠ N(0,�↵x) with �↵x = 1 (59)

"xit ⇠ N(0,�"x) with �"x = 1 (60)

Where, in the case A1 of contemporaneous correlation, we set #0 = 0.5;#1 = #2 = 0. These

24However, the results remain unchanged if we do generate these extra 13 observations and, thus, start the observed
sample with an initial condition for each individual in the sample.
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assumptions imply that corr("it, uit) = corr(↵i, ⌘i) = 0.5/
p
1 + 0.52 = 0.447. Alternatively, in the

case os serially cross-correlated errors we set # = 0.5;#1 = 0.5/2;#2 = �0.5/3.

5.1 Description of the experiments

For each experiment, we set the initial (before selection) sample size to N = 500 or N = 5000,

and for each i, we draw up to 20 time series observations, from which the initial 13 are discarded.

Once selection is applied, the unbalanced panels are formed. In dynamic models we need at least

three consecutive observations of the same regime to form an observation of the selected panel.

This implies that a large fraction of the observations do not contribute to the identification of

the parameters, even with a small degree of sample selection. For example, a 15 per cent of initial

selection implies loosing around 1/3 of the observations. In static models with exogenous regressors

the lost is less important. For each combination of the parameters we perform 500 replications.

Under the assumption of contemporaneous correlated errors, we simulate the following five

combinations of the parameters of interest, linked to the cases already described in Table 1:

(i) Static model with an exogenous x not present in the selection equation: ⇢ = 0, � = 1 � = 0

(ii) Static model with an exogenous x also present in the selection equation: ⇢ = 0, � = � = 1

(iii) Static model with an exogenous x

(iv) Purely AR(1) model: ⇢ = 0.25, 0.50, 0.75, � = � = 0

(v) Dynamic model with an endogenous covariate not present in the selection equation: ⇢ =

0.25; ⇢ = 0.75, � = 1 � = 0

(vi) Dynamic model with an endogenous covariate also present in the selection equation: ⇢ =

0.25; ⇢ = 0.75, � = 1 = �

In each case, we evaluate the performance of the appropriate estimators as described in Table

1. In (i) and (ii) we evaluate the FE, FD and RE estimators. In (iii) to (v) we evaluate two GMM

estimators: AB and system. Selection of the instruments is a crucial step of our simulation study.

In both cases we select the instruments as follows: we use lags from t � 2 backwards for first-

di↵erenced equations, although we also evaluate the performance of the estimates with a restricted

set of instruments. We use the lagged first di↵erence of the outcome as an additional instrument for

the equation in levels as well as current values and lags of the exogenous regressors. Although we

are aware of the instrument proliferation issue analyzed by Roodman (2009), it does not constitute

a problem here given the reduced number of periods (a maximum of 7) remaining for estimation.25

25We also use Roodman’s proposal to collapse the number of instruments and we get very similar results, available
upon request, in the empirical applications.

21



Table 2: Average bias and RMSE in the static model. T=7; 500 replications

x in Corrected FE estimator FD estimator RE (GLS) estimator
selection av. bias RMSE ERF av. bias RMSE ERF av. bias RMSE ERF

correction correction sel. term

Panel A: N = 500; endogenous selection, cov(x, z) = 0

No No .00023 .02143 -.00063 .03008 .00057 .01510
Yes No -.04741 .05365 -.04269 .05542 -.06408 .06702
Yes Yes1 .00098 .02948 .95 .00079 .03890 .77 -.00344 .02447 1

Panel A: N = 500; exogenous selection, cov(x, z) = 0

Yes Yes1 .00104 .02611 .05 .00076 .03484 .05 .00096 .02181 .07
Panel B: N = 5000; endogenous selection, cov(x, z) = 0

No No -.00008 .00700 .00025 .00933 .00010 .00518
Yes No -.04694 .04763 -.04124 .04264 -.06397 .06426
Yes Yes1 .00202 .00966 1 .00225 .01279 1 -.00235 .00812 1

Panel B: N = 5000; exogenous selection, cov(x, z) = 0

Yes Yes1 .00013 .00840 .04 .00054 .01126 .06 .00009 .00669 .04

Panel C: N = 500; endogenous selection, cov(x, z) 6= 0

No No -.02532 .03046 -.03147 .03993 -.02107 .02509
No Yes2 -.00107 .02044 .50 -.00178 .02896 .38 -.00038 .01540 .74

Panel C: N = 5000; endogenous selection, cov(x, z) 6= 0

No No -.02533 .02585 -.03146 .03235 -.02122 .02164
No Yes2 -.00035 .00635 1 .00000 .00901 1 -.00022 .00484 1

1. In Panels A y B the correction is obtained from a year by year probit with z as a covariate.
2. In Panel C the correction is E(x|z), being cov(x, z0) 6= 0 where z0 2 z.

5.2 Simulation results for static models

In this section we present simulations for static models, all of them under the assumption that the

errors in both equations are contemporaneously correlated.

5.2.1 Static model with � = 0 and x?z

This case corresponds to the basic static model with a covariate x, absent from the selection

equation and unrelated to z, i.e., cov(x, z) = 0. We consider three estimators: FE, FD and RE

estimated by GLS. The results are reported in the first row of Panels A and B in Table 2. They

show that the average bias is almost zero, regardless of the initial sample size, small (Panel A) or

large (Panel B). According to the RMSE criterion, since in our experiment cov(x,↵i) = 0, the RE

is our preferred method. Otherwise, the FE estimator will be mildly preferred to the FD one.

5.2.2 Static model with � 6= 0 and x?z

The next simulations correspond to the basic static model with a covariate x included in both

equations or static model with observed feedback. We again consider three estimators, FE, FD

and RE estimated by GLS, and we present two sets of estimates, uncorrected (to make evident the
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selection bias of the uncorrected estimates) and corrected for selection. The results are reported in

the second and third rows of Panels A and B in Table 2.

When we do not correct for sample selection bias (second row of Panels A and B of Table 2),

all three estimators are biased regardless of the sample size. The results of row 3 of Panels A and

B show the e↵ects that correction a la Wooldridge has when at least a covariate is included in the

selection and outcome equations: average bias is very small regardless of the sample size.26 As in

the previous subsection, since cov(x,↵i) = 0, the RE presents a lower RMSE, i.e., is, as expected,

more e�cient than either the FE or the FD estimator.

Sample selection test. We also report the empirical rejection frequency (ERF) of the sample

selection test corresponding to the corrected estimator under the null hypothesis that the selection

term is not necessary in the outcome equation. The ERF computes the percentage of rejection of

the null in 500 replications. When there is endogenous selection (the null is false) and the initial N

is small, we reject both the FE and the RE estimators in 95% and 99.8% of the cases, respectively,

while the rejection rate of the FD estimator is smaller, 76.8%. When the initial sample is large (N

is 5000) we always reject the null. When the null is true (no endogenous selection) we reject the

null in between 3.8% (FE estimator and N large) and 7% (RE and N small) of the cases.

5.2.3 Static model with � = 0 and x 6? z

A very interesting case arises when x is not included in the selection equation but it is correlated

with some variables includes in the vector z, say z0. We show in Panel C of Table 2 that the

uncorrected estimates are biased. In these circumstances, one would be tempted to follow standard

sample selection approach, and add a Heckman’s type correction to the outcome equation. However,

as we have described in section 4.3.1 this is not strictly necessary. In order to control the bias we

add to the outcome equation an estimate of E(x|z0)
The simulated results for this procedure are presented in Panel C of Table 2. Our proposal

takes out practically all the bias regardless of the sample size, but especially when the sample is

large, N = 5000 in our case. The specification test shows some lack of size when N = 500, although

this problem disappears as the sample grows.

5.3 Simulation results for AR(1) model

5.3.1 Basic results

Table 3 presents results for the AR(1) model for three values of the autoregressive parameter: 0.25,

0.50 and 0.75 under the assumption that the errors are only contemporaneously correlated.27 We

26We obtain the same qualitative results when the lagged outcome is included in the selection equation and the
outcome equation is dynamic in nature.

27Results for other values of the autoregressive parameter are available upon request. For example, for values below
0.25 (for example, 0.10), the results remain unchanged while for values closer to one (for example, 0.90), the bias is
larger but not worse than the one found in, for example, the balanced sample.
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report results for both the AB and the system estimators constructed under competing assump-

tions about the selection process: (a) non-endogenous selection; (b) endogenous selection without

correction. The initial degree of sample selection is 15 per cent, while the fraction of the sample

lost is much larger (around 1/3 of the observations on average).

Let us start reviewing the results without endogenous selection, reported in columns (1) and

(2). When the initial sample (before selecting the observations) is small (N = 500) the bias of the

AB grows with the autoregressive parameter (for both selection models, A and B) and becomes

sizable when ⇢ = 0.75.28 As we increase the sample size (N = 5000), the average bias of the AB

estimator is reduced substantially and only remains noticeable for ⇢ = 0.75. Alternatively, the

system estimator, which is also consistent in this case, shows a very small bias for N = 500 (never

exceeding one per cent), even smaller when N = 5000. Figure 1 confirms these results with a

sample size varying from N = 200 to N = 5000 in the absence of any sort of selection (estimators

labeled AB all and system all).

When endogenous sample selection is considered (see columns (3) and (4) for, respectively, the

uncorrected AB and system estimators), we do not detect any significant change in the bias results

for the uncorrected AB estimator for both selection models. Even when the initial sample is small,

the di↵erence between the cases with and without selection is practically undetectable (although

the smaller e↵ective sample size in the selected sample leads to higher RMSE). In contrast, the

system estimator always shows a very small bias (between 1 per cent for ⇢ = 0.25 and 2.25 per

cent for ⇢ = 0.75). Note that the bias becomes more evident as the sample size grows (see Figure

1). As a sort of compensation, the standard errors for the system estimator always tend to be

substantially smaller.

Some additional conclusions can be drawn when varying the sample size (Figure 1). When

N = 200, the AB estimator shows sizable bias, which decreases as N increases. The system

estimator has always very small bias, however. For a given ⇢, it remains stable (between 1 and

2.5 per cent) as N increases. We detect a threshold for N for each combination of parameters,

the average bias of the system estimator being smaller Below this threshold, and larger above it.

Therefore, we may conclude that for moderate and small samples (say, below the range 1000-1500),

the system estimator is highly recommended because of the likely smaller bias as well as smaller

variance.

Finally, as shown in Figure 2, when ↵i and ⌘i are not correlated, the bias of the system estimator

tends to disappear (in comparison with the previous case) due to the fact that the main source

of bias is the correlation between the heterogeneous components of the outcome and selection

equations (see Table A.1 for an illustration).29 In the next section, we describe a control function

approach to account for the correlation between ↵i and ⌘i, thereby reducing to a minimum the bias

28See Blundell and Bond (1998) and Hayawaka (2007) for analyses of the small sample bias of the AB and system
GMM estimators in linear models.

29Table A.1 in the Appendix presents an analysis of the conditional expectation of the key moment conditions of
the model for di↵erent values of N , ⇢ and correlation between the error components and the autoregressive parameter.
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Table 3: Average bias and RMSE in the purely AR(1) model. T=7; 500 replications

Estimates with the full sample Estimates with the selected sample
AB estimator system AB estimator system system, level eq. corrected1

⇢ av. bias RMSE av. bias RMSE av. bias RMSE av. bias RMSE av. bias RMSE ERF2

Panel A: N=500

0.25 –.00573 .04067 .00049 .03196 -.01407 .05572 -.00339 .04362 -.00038 .00183 .97
0.50 –.01173 .05603 .00205 .03680 -.03172 .08264 -.00825 .05146 -.00147 .00244 .97
0.75 –.04250 .10140 .00836 .04455 -.10030 .16542 -.00909 .06521 -.00081 .00375 .87

Panel B: N=5000

0.25 -.00132 .01189 -.00032 .00945 -.00113 .01708 -.00366 .01293 -.00022 .00015 1
0.50 -.00196 .01635 -.00007 .01131 -.00249 .02455 -.00952 .01735 -.00180 .00020 1
0.75 -.00451 .02900 .00071 .01366 -.00856 .04317 -.01821 .02612 -.00697 .00036 1

1. Corrected System estimator. Control function approach to correct the level equations only.

2. ERF of the correction term. The correction term has been obtained from a fixed e↵ect first stage regression.

of the system estimator.

5.3.2 A simple procedure for bias reduction of the uncorrected system estimator in

AR(1) model or dynamic models with � = 0 and x?z

As stated before and shown in Figure 2, a large fraction of the inconsistency of the system estimator

stems from the correlation between the unobserved heterogeneous components in equations (1) and

(2). Because many practitioners are potentially interested in estimating these models using the

system estimator (especially when the available sample size is small), we describe a simple procedure

to obtain it, and we also suggest a test. Assuming that the E(↵i|⌘i) = ✓⌘i, so ↵i = E(↵i|⌘i) + ↵⇤
i ,

the procedure can be described as follows:

Step 1: Provided the selection equation has an exclusion restriction, obtain a consistent

estimate of the fixed e↵ects (⌘̂i) in the selection equation using a linear probability model.30

Step 2: Add ⌘̂i to the following equation in levels to control the correlation between the

time-invariant errors.

yit = ⇢yit�1 + ↵⇤
i + ✓⌘̂i + e⇤it for ti s.t. dit, dit�1, dit�2 = 1

where we can assume that ↵⇤
i is not correlated with the time invariant component in the

selection equation.

30Olsen (1980) proposed a similar method with a least squares correction in a cross-section context.
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Step 3: Estimate the previous equation combining the uncorrected equations in first di↵er-

ences and the corrected equations in levels.

A simple t-test of the null ✓ = 0 stands for a test of endogenous selection. As in the previous

case, corrected standard errors can be computed using the delta method or bootstrapping. If

we cannot reject the null hypothesis, the individual heterogeneous components are uncorrelated,

so the only potential source of endogenous selection is the correlation of the time-variant errors.

Therefore, the only remaining problem for the consistency of the system GMM estimator is the

potential correlation between the time varying errors of both equations. However, we show in Table

A.1 that this correlation does not generate much bias.

We present in the last three columns of Table 3 simulations of average bias, RMSE and ERF

for the test. With respect to the uncorrected system estimators, the magnitude of the average bias

(and the RMSE) is reduced between 1/2 and 2/3, depending on the autocorrelation coe�cient and

the sample size. The test of correlation between the heterogeneity components has strong size,

except when the sample size is small (N = 500) and ⇢ = 0.75.
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Figure 1: Average bias of the AB and system estimators in the full sample ((NxT
observations) and the endogenously selected sample
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Notes.

AB all: AB GMM estimates using the full (NxT ) sample (no selection process).

system all: System GMM estimates using the full (NxT ) sample (no selection process).

AB select: Uncorrected for selection AB GMM estimates on the selected sample under endogenous sample selection.

system select: Uncorrected system GMM estimates on the selected sample under endogenous sample selection.
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Figure 2: Average bias of system estimator in the full sample (NxT observations) and

the endogenously selected sample when ↵i and ⌘i are not correlated
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Notes.

system all: System GMM estimates with the full sample (no-selection).

system select: Uncorrected system GMM estimates with the selected sample under endogenous selection due to

correlation of the time-varying errors.

5.3.3 Additional results for the AR(1)

We have done several Monte Carlo exercises with cases departing from the basic assumptions of the

purely AR(1) model.31 We consider the following cases: (a) varying the longitudinal dimension of

the panel; (b) increasing the percentage of selection (from 0.15 to 0.25); (c) increasing the ratio of

the variances to �2
↵

⇢2
"

= 2; (d) reducing the correlation between the errors (the correlation parameter

is reduced from 0.5 to 0.25); (e) and, finally, non-stationary time varying errors and correlation

of the time-varying error components. In particular, we allow the variance of the time-varying

errors in (1) and (2) to vary over time32 and we also allow the correlation coe�cient between the

31These results are not reported in the paper, but they are available from the authors on request.
32We multiply either "

it

or u
it

by a time-varying Bernoulli process taking either 1 or 2.
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time-varying errors in (1) and (2) to vary over time.33 All these sensitivity exercises confirms the

main lessons drawn from the previous analysis: the AB (or the AH) estimator is moderately biased

when N is small or moderate, and unbiased when N is large while the system estimator does not.

All these results imply that the system estimator is specially recommended when the sample size

is small or even moderate (below 1000 and 1500 individuals) and less necessary when the sample

size is very large.

5.4 The dynamic model with covariates

This section is devoted to Monte Carlo exercises for dynamic models with a covariate that can either

be or not included in the selection equation. This variable can be either exogenous, predetermined or

endogenous. We present two simulation exercises of dynamic models with an endogenous covariate

and another one with an exogenous variable.

5.4.1 The dynamic model with an endogenous covariate not included in the selection

equation and cov("it, uis = 0; s < t)

We present simulations of a dynamic model with an endogenous covariate x, but independent of

z (in case they are not independent we will follow the procedure described in section 4.3.1), the

covariate in the selection equation. The key results obtained are shown in the first two columns

(for ⇢ = 0.25 and ⇢ = 0.75) of Panels A and B in Table 4. They find that the AB is consistent when

there is an endogenous covariate in the outcome equation not present in the selection equation. The

small biases found with N = 500 decrease as the sample size increases (they practically disappear

when N = 5000). The system estimator, although not consistent, has a very small bias regardless

of the sample size. More importantly, the RMSE is smaller than the AB case, even when the sample

is large (N = 5000). Note however, that for very large samples the latter remark is no longer true,

since the bias of the AB estimator goes to zero while the bias of the system one does not.34

5.4.2 The dynamic model with an endogenous covariate included in the selection

equation and cov("it, uis = 0; s < t)

Now, we focus on a dynamic model with a covariate x present in both, the outcome and the

selection equations. We present both uncorrected and corrected estimates. The uncorrected results

are reported in the third and four rows and the corrected ones in fifth and six rows of Panels A

and B in Table 4. The uncorrected estimates are biased regardless of the sample size, which shows

the necessity of correcting for sample selection when there is at least a common covariate in both

equations. The necessity to use GMM implies correcting the outcome equation with current, lagged

and lagged twice lambda correction terms. Furthermore, since x is endogenous, these additional

33We multiply # by either 0.5, 1 or 2.
34All these results also apply to the case where x is predetermined or exogenous. We do not report them, but they

are available on request for interested readers.
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Table 4: Average bias and RMSE in the dynamic model with an endogenous covariate.
(cov("it, uit) 6= 0; cov("it, uis) 6= 0; s < t) T=7; 500 replications

AB SYSTEM
x in Corrected value ⇢ � � test ⇢ � � test

selection ⇢ av. bias RMSE av. bias RMSE ERF av. bias RMSE av. bias RMSE ERF

Panel A: N=500; endogenous selection

No No .25 -.01089 .03226 .00984 .03930 -.00600 .02390 .00744 .03268
No No .75 -.02905 .05914 -.00869 .05054 -.00507 .02241 .00427 .03049
Yes No .25 -.02356 .03762 -.03885 .05751 -.01021 .02816 -.03677 .05508
Yes No .75 -.03337 .04648 -.05507 .0714 -.01551 .03571 -.04409 .06096
Yes Yes1 .25 -.03444 .04512 .02349 .05467 .51 -.01842 .03210 .01293 .04797 .42
Yes Yes1 .75 -.03866 .05054 -.00031 .05285 .45 -.01517 .03312 .00440 .04587 .43

Panel A: N=500; exogenous selection

Yes Yes1 .25 -.01647 .03833 .00071 .04697 .04 .00034 .03087 .00088 .03877 .04
Yes Yes1 .75 -.02452 .04615 -.01315 .05389 .04 .01352 .03169 .00225 .03915 .05

Panel B: N=5000; endogenous selection

No No .25 -.00107 .01007 .00071 .01089 -.00195 .00780 .00067 .00930
No No .75 -.00405 .01647 -.00198 .01481 -.00468 .00843 -.00143 .00907
Yes No .25 -.01277 .01576 -.05529 .05678 -.00525 .00999 -.04928 .05075
Yes No .75 -.02173 .02389 -.06365 .06512 -.01788 .02067 -.05621 .05772
Yes Yes1 .25 -.01922 .02124 -.00757 .01683 1 -.01135 .01401 -.0048 .01442 1
Yes Yes1 .75 -.02332 .02528 -.01912 .02477 1 -.01478 .01773 -.00998 .01711 1

Panel B: N=5000; exogenous selection

Yes Yes1 .25 -.00200 .01076 -.00047 .01392 .06 -.00028 .00879 -.00076 .01239 .05
Yes Yes1 .75 -.00282 .01171 -.00231 .01561 .06 .00184 .01090 -.00042 .01290 .04

1. In Panels A y B the correction is obtained from a year by year probit with z and } as covariates.
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terms need to be instrumented using lag two and backward lags. The e↵ects of sample correction on

the magnitude of the bias reduction is very important, specially in the case of �. These reductions

as well as decreases of the RMSE are related to the sample size.

Sample selection test When the sample is small the ERF is small (around 0.50), so the sample

selection test fails to detect the presence of endogenous sample selection for both estimators. As

the sample increases the performance of the test improves substantially with an ERF close to 1.

When the null is true the ERF fall in a range of 0.38 (lowest) to 0.06 (highest).

5.4.3 The dynamic model with an exogenous covariate not included in the selection

equation and cov("it, uis 6= 0s < t)

In this section we explore the estimation of a sample selection model when the time-variant errors

are cross-serially correlated cov("it, uis 6= 0; s  t). As shown we the two equation do not have

covariates in common and independent, there is no necessity to correct the estimates, even we the

correlation structure is very complex. The results from this experiment are reported in the first

two rows of panels A and B in Table 5. Although this is a very di�cult case the results show very

small bias of the uncorrected estimator in both samples.

5.4.4 The dynamic model with an exogenous covariate included in the selection equa-

tion and cov("it, uis 6= 0; s  t)

Another feature of these models that we like to explore is the presence of time-variant errors are

cross-serial correlation between the time-variant errors of both equations, i.e., cov("it, uis 6= 0; s 
t). We show in Appendix B that when there are common covariates the estimation of the model

either by GMM of system GMM requires multiple correction terms. In the particular case of the

system GMM, we have to add two correction terms obtained in trivariate probit models to the

first-di↵erenced equations and two additional terms obtained in bivariate probit models to the

equation in levels. Moreover, we have to use a Wald test instead of a typical t-test to check for

sample selectivity.

The simulation results corresponding to these exercises are reported in Table 5. They are in

line with prior expectations since the bias of the uncorrected estimator is sizable, especially for �,

a feature shared by many of the results we have presented so far, and it does not decreases as N

grows. However, the bias of the corrected estimator is very small and decreases with N . On the

other hand, the ERF of the correction terms is moderate when N is small and increases to a value

close to 1 as N grows. Alternatively, when there is not correlation the ERF stabilizes around 0.06

both for the AB and system estimators.
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Table 5: Average bias and RMSE in the dynamic model with an exogenous covariate. cov("it, uis 6=
0; s  t) T=7; 500 replications

AB SYSTEM
x in Corrected value ⇢ � �’s test ⇢ � �’s test

selection ⇢ av. bias RMSE av. bias RMSE ERF av. bias RMSE av. bias RMSE ERF

Panel A: N=500; endogenous selection

No No .25 -.00040 .02253 -.00323 .02680 .01737 .02736 .00682 .02693
No No .75 -.01324 .02571 -.00515 .02765 .00783 .01978 .01083 .02764
Yes No .25 -.01926 .03446 -.04024 .05064 .00233 .02769 -.03157 .04421
Yes No .75 -.02664 .03769 -.04468 .05447 -.00886 .02574 -.03542 .04751
Yes Yes .25 -.00845 .03196 -.00150 .04544 .48 .02073 .03419 .00606 .04422 .76
Yes Yes .75 -.01972 .03584 -.00844 .04478 .48 -.00297 .02120 .00636 .04243 .70

Panel A: N=500; exogenous selection

Yes Yes .25 -.01460 .03212 -.00326 .04122 .17 -.00109 .02466 -.00031 .03796 .29
Yes Yes .75 -.01431 .02843 -.00583 .04164 .16 .00337 .01904 .00191 .03819 .29

Panel B: N=5000; endogenous selection

No No .25 .00608 .00943 -.00153 .00749 .01688 .01817 .00649 .00964
No No .75 -.00498 .00857 -.00190 .00769 .00394 .00729 .00951 .01182
Yes No .25 -.00975 .01291 -.03855 .03954 .00243 .00844 -.03249 .03363
Yes No .75 -.01513 .01709 -.04010 .04111 -.01583 .01728 -.03859 .03963
Yes Yes .25 .00923 .01330 .00153 .01456 1 .02330 .02470 .00465 .01404 1
Yes Yes .75 -.00123 .00841 -.00250 .01409 1 -.00420 .00755 .00041 .01225 1

Panel B: N=5000; exogenous selection

Yes Yes .25 -.00087 .00788 .00236 .01308 .06 .00091 .00746 .00218 .01193 .05
Yes Yes .75 -.00052 .00753 .00110 .01332 .07 .00100 .00577 .00111 .01203 .06

Testing univariate corrections vs multiple corrections

AB SYSTEM
x in Corrected value ⇢ � xtra�’s test ⇢ � xtra�’s test

selection ⇢ av. bias RMSE av. bias RMSE ERF av. bias RMSE av. bias RMSE ERF

Panel C1: N=500; endogenous selection but cov("it, uis = 0; s < t)

Yes Yes .25 -.01951 .05030 -.00518 .0408 .13 -.00139 .03862 -.00405 .03976 .20
Yes Yes .75 -.03438 .06223 -.01231 .04536 .14 .00264 .03034 -.00140 .04139 .22

Panel C2: N=5000; endogenous selection but cov("it, uis = 0; s < t)

Yes Yes .25 -.00196 .01439 -.00118 .01409 .08 -.00245 .01127 -.00081 .01268 .20
Yes Yes .75 -.00465 .01773 -.00156 .01508 .06 .00058 .00967 -.00006 .01279 .20

1: In Panels A to C the correction is obtained from trivariate probits (for FD equations) and bivariate probits (for

level equations) with z, z(-1) and z(-2) as covariates (in the trivariate case) or z, z(-1) in the bivariate one.

32



5.4.5 Testing univariate vs multivariate corrections

Our final Monte Carlo exercise compares univariate tests of selection bias presented in Panels A and

B of Table 5 with multivariate ones. In presence of sample selection but absence of longitudinal

cross-correlation between the outcome and the selection, i.e., cov("it, uit 6= 0) and cov("it, uis =

0; s < t), we simulate the GMM estimators with two correction terms. Wooldridge-like corrections

are adequate (heckman’s lamdba in first di↵erences and levels in the first-di↵erenced and in the

levels in the equation, respectively). In these circumstances, it is easy to show that the coe�cient

of the lagged twice trivariate lambda in the first-di↵erenced equations and the coe�cient of the

lagged bivariate lambda in the equation in levels should be equal to zero. Then, a simple t-test in

the corrected AB estimator or a Wald test in the corrected system estimator stand for checks of

longitudinal correlation between the errors in the outcome and the selection equations. We obtain

the expected results as reported in Panel C of Table 5.

6 Empirical applications

This section presents two applications of the proposed methods. The first uses well-known data

from the Panel Study of Income Dynamics (PSID) to estimate log hourly earnings equations of US

females. This dataset has been employed in several empirical papers with di↵erent purposes, but

we use it to compare our results to alternative methods for selection models proposed by SW. The

second uses consumption data from the Spanish Continuous Family Expenditure Survey (ECPF

from now on) to adjust myopic and rational addiction models of tobacco consumption. This is the

same dataset used by Jones and Labeaga (2003). They were worried about the censoring nature of

the observations and how to handle it in the framework of a rational addiction model of tobacco

consumption (see Becker and Murphy, 1988, and Becker et al., 1994). Our objective here is twofold.

First, we estimate a myopic model of consumption trying to mimic our autoregressive proposals.

Second, we adjust a rational addiction model to compare to Jones and Labeaga (2003).

6.1 Estimating female earnings equations

In this first application, we employ the same data used in SW, which were also used by Lai and Tsai

(2016).35 The data consists of a panel taken from the PSID covering the period 1980-1992, and

we use the same selection rules (see Section 6 in Semykina and Wooldridge, 2013). The results for

the pure autoregressive model are presented in Table 6. Then, we extend the model in Table 7 to

include age, aage squared and number of years of education. The first column in Table 6 presents

first-di↵erenced IV estimates. Alternatively, column (1) in Table 7 reports the SW estimator.

Columns (2) and (3) in both tables report AB and system results obtained in the selected sample,

but when we do not correct the earnings equation. Column (4) in both tables adds a correction for

35We compare our results with those presented by SW, but, unfortunately, we cannot compare with Lai and Tsay
(2016) because they estimated a static sample selection model.
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the correlation between the unobserved heterogeneous components. In column (5) of Table 6 we

present a year-by-year correction only for the equation in levels. Alternatively, in columns (5) and

(6) of Table 7 we present year-by-year probit corrections under the assumption that the errors in

both equations are contemporaneously correlated. 36

In Table 7, we consider the demographic variables to be strictly exogenous and we instrument

the lagged log of the dependent variable using all available instruments for both the equations in

levels and first-di↵erences. The number of overidentifying restriction is 65 in the first-di↵erenced

model and 76 in the system one. We conduct a sensitivity analysis for changes in the number of

instruments and obtain very robust results (see Roodman, 2009).37

The results for the pure autoregressive model are in line with our simulation results. The

coe�cient of the lagged dependent variable is estimated at 0.103 using the AB estimator and

0.18 using the system GMM estimator without correction. The di↵erence between them may

be attributable to the small sample size in the individual dimension.38 Adding a correction for

the correlation of the unobserved heterogeneity components (see column 4), barely changes the

coe�cient. Alternatively, adding a year-by-year correction in either the equation in levels or in all

equations mildly increases the autoregressive parameter. Note, however, that the selection terms

are found to be jointly significant.

The autoregressive coe�cient (as well as its standard error) remains practically identical in the

extended model in Table 7 compared to the pure autoregressive case, and it is substantially lower

than the one obtained by SW. Given that the all first stage variables are either time-invariant

(education) or deterministic (age and age square) the uncorrected first di↵erences estimates are

consistent. So, the result in column (5) are not necessary (if we assume that the first stage regression

is correct). The proposed corrections of the system estimator do not imply significant changes in

the key coe�cients of the model. All in all, our estimates of the coe�cient of the lag of log hourly

earnings are in line with the results obtained in a similar context by Arellano et al. (1999) using a

sample of females from the PSID for the 1970-76 period, and correcting for selectivity (see Table

A.3 in that paper). Furthermore, another dynamic earnings model using the PSID for the 1968-81

period, in this case for males (Holtz-Eakin et al., 1988), yields a similar result for the coe�cient of

lagged log earnings.

It is also important to note that our age and education estimates are very di↵erent from the

results in SW, but they are in line with those found in the previous literature using similar data.

36All the AB and system GMM estimates, except those reported in column (5) of Table 6, were obtained using
the stata xtabond2 package (see Rodman, 2006). The estimates reported in column (5) have been obtained using a
modified version of xtabond2 that only includes the correction in the equation in levels. Note, however, that these
estimates can be also obtained using the Stata gmm routine.

37For instance, when we use up to the fourth lag instead of all lags of the log hourly earnings, we obtain the
following coe�cients: 0.178, 0.093, 0.020 and -0.0002 for the lagged dependent variable, education, age and age
squared, respectively. They compare with those in column 3 of Table 7.

38An example with large N (4739) small T (6) can be found in Stewart (2007). He presents the results of the
estimation of a dynamic panel data model with unbalanced data using GMM methods (Table V). He comments, p.
526, that the AB and system results are substantially identical.
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The coe�cients of age, age squared and education have the expected signs, with a quadratic profile

of age showing increasing earnings at a decreasing rate. The return to education we get is more

in line with the average return to education for females for the US usually found in the literature

(see Card, 1999, Harmon et al., 2003 or Polachek, 2008). Regarding endogenous selection, we

do not detect endogenous selection due to correlation between the time-invariant heterogeneity

components (column (5) and (6) in Table 7).

Table 6: AR(1) log hourly earnings equation

(1) (2) (3) (4) (5)

2SLS-IV No No Het. components yby
correction correction correction of correction of

lev eq. only lev eq. only

AB system system system

Lag log 0.1522** 0.1029** 0.1798*** 0.1791*** 0.2354***
hourly earnings (0.0489) (0.0377) (0.0434) (0.0436) (0.0444)

⌘̂i 0.0438
(0.0305)

Observations 5033 5033 5033 5033 5033

Joint significance 105.13 (11)
selection terms (0.000)

Notes: 1. N = 550; 2. Annual dummies are included in all specifications; 3. *** significant at 1%; ** significant at

5%; * significant at 10%; 4. The standard errors have been corrected following Windmeijer (2005). In columns (4)

to (6), we also report corrected standard errors following Terza (2016). See the Appendix C for details; 5. The test

of significance of the selection terms is a Wald test. Degrees of freedom and level of significance are in parentheses.

All in all, our opinion is that the similarities among the coe�cients with and without correcting

for selectivity confirm the results of our Monte Carlo experiment. A lesson for practitioners is that

there is little necessity to correct for endogenous selection in situations similar to the one studied

in this paper. SW’s proposal is only suitable for balanced panels and after making very particular

assumptions about initial conditions. Although it is feasible to adapt SW’s proposal to the more

general unbalanced panel case, there are analytical as well as computational costs, which lead us

to suggest the simple methods we have just presented in this paper.39

39To adapt the SW estimator to an unbalanced panel, we must estimate the model using the SW procedure for each
subpanel (i.e., the subsamples with 4, 5, 6, 7, and so on, observations) and then recover the structural parameters by
minimum distance.
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Table 7: Estimates for the dynamic log hourly earnings equation with covariates

(1) (2) (3) (4) (5) (6)

Semikina No No Het. components yby yby
Wooldridge correction correction correction correction correction

lev eq. only first dif eq all equations

GMM AB system system AB system

Lag log 0.5740*** 0.1047** 0.1850*** 0.1794*** 0.1170*** 0.2189**
hourly earnings (0.0400) (0.0374) (0.0436) (0.0442) (0.0379) (0.0447)

Education 0.0290*** — 0.0949*** 0.0939*** — 0.0931***
(0.004) (0.0084) (0.0083) (0.0085)

Age 0.0090*** 0.0070 0.0375*** 0.0381** 0.0269** 0.0228***
(0.004) (0.0127) (0.0113) (0.0147) (0.0128) (0.0126)

Age squared -0.0001*** -0.0001 -0.0004*** -0.0005*** -0.0001 -0.0003***
(0.000) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)

⌘̂i 0.3020***
(0.0833)

Observations 5033 5033 5033 5033 5033 5033

Joint significance 41.3 (10) – – – 11.27 (11) 14.80 (11)
selection terms (0.000) (0.421) (0.192)

Notes. 1. N = 550; 2. GMM results obtained using the proposal by Semikyna and Wooldridge (2013); 3. Annual

dummies are included in all specifications; 4. *** significant at 1%; ** significant at 5%; * significant at 10%; 5. The

standard errors have been corrected following Windmeijer (2005); In columns (4) to (6), we also report corrected

standard errors following Terza (2016). See the Appendix C for details; 6. The test of significance of the selection

terms is a Wald test. Degrees of freedom and level of significance are in parentheses.

6.2 Estimating models of tobacco consumption

The previous application is done on a small (cross-section dimension) sample size of N = 550

similar to the number of individuals of one Monte Carlo exercise. In this second application,

we use a much larger (in the cross-section dimension) sample size. In more detail, we use the

data in Jones and Labeaga (2003) to estimate (as they do) rational addiction models of tobacco

consumption, but we also adjust a myopic model where only the lag of consumption and the price of

tobacco enter the outcome equation (the price of tobacco does not enter the selection equation). We

make use of the repeated observations on tobacco expenditure in the ECPF from the third quarter

of 1986 to the fourth of 1994. This is a rotating panel survey conducted by the Spanish Statistical

O�ce. Each quarter 3,200 individuals were interviewed, with replacement at a rate of 12.5 percent.

Consequently, the maximum number of periods that an individual remains in the survey is eight

and as initial sample we use the balanced panel. The original size is 48,800 observations N = 6100

and T = 8. We drop non-smokers households, i.e., those reporting zero consumption in the eight

quarters (N = 1957) to compare with the results of Jones and Labeaga (2003). Those households

who report some zero purchases on tobacco may be a↵ected by selection reflecting an intermittent
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sequence of quits and take-ups from smoking. Then, the final model with and without correction

is estimated on a sample of N = 4041 (NT = 22520), out of which 52 percent report eight positive

purchases.

The results for the myopic model are presented in Table 8 (this is similar to a pure autoregressive

model in the sense that the price of tobacco is an exogenous variable not included in the decision

to start-quit smoking). The first column in Table 8 presents first-di↵erenced IV estimates. The

rest of columns in the table reproduce the results of our first application. Columns (2) and (3)

present AB and system results obtained in the selected sample, but when we do not correct the

consumption equation. Column (4) adds a correction for the correlation between the unobserved

heterogeneous components. In column (5) of Table 8 we present a year-by-year correction for the

level equations only.

Table 8: Estimates of myopic models of tobacco consumption

(1) (2) (3) (4) (5)

2SLS-IV No No Het. components yby
correction correction correction of correction of

lev eq. only lev eq. only

AB system system system

Lag real 0.2149*** 0.1010*** 0.1274*** 0.1272*** 0.0815***
tobacco consumption (0.0295) (0.0263) (0.0189) (0.0187) (0.0179)

Real price -0.8023** -1.5900*** -0.8497*** -0.8027*** -0.3980*
of tobacco (0.4055) (0.3614) (0.2278) (0.2271) (0.2362)

⌘̂i 19.1929***
(3.1241)

Observations 22520 22520 22520 22520 22520

Joint significance 176.39 (6)
selection terms (0.000)

Notes: 1. N = 4041; 2. Quarter dummies are included in all specifications; 3. *** significant at 1%; ** significant at

5%; * significant at 10%; 4. The standard errors have been corrected following Windmeijer (2005). In columns (4)

to (6), we also report corrected standard errors following Terza (2016). See the Appendix C for details; 5. The test

of significance of the selection terms is a Wald test. Degrees of freedom and level of significance are in parentheses.

The results in column (1) correspond to IV estimates of AH. The results in column 2 are

estimated by GMM on the first di↵erenced model. As usual in myopic models, we instrument

lagged consumption using previous lags of consumption. Results in column 3 are obtained using

system GMM. Again, we use previous lags as instruments for consumption both in the levels and in

the transformed equations (see Arellano and Bover, 1995, and Blundell and Bond, 1998). In column

(4) we correct the levels equation using the proposal presented in subsubsection 5.3.2, correcting

only the equation in levels of the tobacco consumption model. Despite the high significance of the
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correction term, the coe�cients are very similar to column 3. We find di↵erences when correcting

the levels equation with time varying selection terms in column 5. However, qualitatively, the results

appear to reproduce the same characteristics already commented in the previous application.

Now, we present the results of the rational addiction model, which includes lead consumption

in Table 9. Contrary to Table 8, we now follow the rational addiction theory and we consider

that both lagged and leaded consumption are endogenous and there are not adequate consumption

lags or leads to instrument them, as showed in Becker et al., (1994). Column (1) reports the

Jones-Labeaga estimates, which are not directly comparable to our results.40 Columns (2) and (3)

present AB and system results obtained in the selected sample, but when we do not correct the

consumption equation. Column (4) adds a correction to the equation in levels for the correlation

between the unobserved heterogeneous components. We present the results after including year-

by-year probit corrections (in column (5) we only correct the equations in first di↵erences and in

column (6) also the equation in levels) under the assumption that the errors in both equations are

contemporaneously correlated.

Table 9: Estimates of rational addiction models of tobacco consumption

(1) (2) (3) (4) (5) (6)

Jones No No Het. components yby yby
Labeaga correction correction correction correction correction

lev eq. only first dif eq all equations

GMM AB system system AB system

Lag real 0.5580*** 0.9444*** 0.6466*** 0.6376*** 0.9758*** 0.6454***
tobacco consumption (0.1185) (0.1466) (0.0279) (0.0278) (0.1498) (0.0276)

Lead real 0.4790*** 0.3611*** 0.4174*** 0.4052*** 0.3484*** 0.4098***
tobacco consumption (0.1091) (0.0617) (0.0263) (0.0083) (0.0749) (0.0275)

Real price -0.0360 -0.3299 0.0086 -0.0173 -0.1584 0.0062
of tobacco (0.0507) (0.3035) (0.0619) (0.0616) (0.3279) (0.0643)

⌘̂i -1.9844**
(0.8362)

Observations 14596 14596 14596 14596 14596 14596

Joint significance – – – – 14.28 (5) 7.89 (5)
selection terms (0.014) (0.162)

Notes. 1. N = 4104; 2. System GMM results obtained by Jones and Labeaga (2003); 3. Quarter dummies are
included in all specifications; 4. *** significant at 1%; ** significant at 5%; * significant at 10%; 5. The standard
errors have been corrected following Windmeijer (2005); In columns (4) to (6), we also report corrected standard
errors following Terza (2016). See the Appendix C for details; 6. The test of significance of the selection terms is a
Wald test. Degrees of freedom and level of significance are in parentheses.

The system results from Jones and Labeaga (2003) that take into account censoring are close

40We should be aware that they use all observations including those with observed zeros corresponding to starts-
quits. Moreover, they instrument lags and leads both with prices but also with lags and leads of predicted tobacco
consumption obtained in reduced form tobit or symmetrically censored least squares models.
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to the system results obtained in this paper, for the lag and lead of consumption (although the

instruments are di↵erent) and the AB results are also more related to the AB-kind results of Jones

and Labeaga (2003) not presented here. Since there is evidence of rational addiction, the results

in 8 are not adequate and price of tobacco does not a↵ect consumption in a rational addiction

framework as emphasized by the mentioned authors. We can add that correcting for selection does

not a↵ect the coe�cients of the lag, lead and price, in the spirit of the results of our Monte Carlo

experiments. We find, as in the previous application, some minor di↵erences among the estimates,

but they do not a↵ect the main implications of our theoretical findings and Monte Carlo results.

7 Concluding remarks

In this paper we have analyzed the properties and the consistency of classical and GMM estimators

for both static and dynamic panel data models subject to potentially endogenous sample selection.

We show that a la Heckman sample selection corrections are only strictly needed when both equa-

tions have common covariates. In models without common covariates, regardless of the severity

and even the complexity of the selection process (either with contemporaneous correlation only

or with serial cross-correlation), standard estimators for the static model and the Arellano and

Bond (1991) and the Anderson and Hsiao (1982) estimators for the dynamic model are consistent.

Note, however, specifically for dynamic models, the system GMM estimator is moderately biased

regardless of the sample size. The bias is due to caused by the level orthogonality restrictions only,

thereby implying that to correct the estimator we only need to correct the level equations and not

the equations in first di↵erences. Note, however, that most of the (small) bias is due to the corre-

lation between the individual heterogeneous components in the outcome and selection equations,

which suggest a simple control approach that wipes out most of the estimator bias.

Alternatively, when the outcome and the selection equation have covariates in common (when

the covariates are not independent we can follow a control function approach, we show the validity

of simple corrections based in Woolridge (1995), Rochina-Barrachina (1999) and Jiménez-Mart́ın

et al. (2009). When the errors are not serially correlated we can extend the proposal of Wooldridge

(1995) to more complex cases, such as static models estimated in first di↵erences or even to dynamic

models. Alternatively, when they are serially cross-correlated (cov("it, uis 6= 0; s < t)), then we

suggest using multivariate corrections.

We evaluate the finite sample performance of the classical (FE, FD and RE) as well as IV

estimators (AB and system GMM) in a Monte Carlo exercise. The results of our experiments

confirm the theoretical predictions under a variety of assumptions. Since sample size is crucial for

the properties of the estimators and for the magnitude of the bias, we do two empirical applications

di↵ering in the number of individuals observed each period. We confirm the results of the Monte

Carlo study in the estimation of female earnings equations using US data and in the adjustment of

tobacco consumption equations using Spanish data.

To conclude, we find that the key determinant of the necessity of sample selection corrections
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a la Heckman is the presence of a common covariate and not whether the errors of the selection

and outcome equations are correlated or not. We believe that our findings could be of particular

relevance for practitioners in a large variety of circumstances, specially when sample selection is

very complex or of unknown form, or when selection is di�cult to model due to missing data

problems or lack of appropriate exclusion restrictions.
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Appendix

A Consistency of the estimators when � = 0 and x?z

Consider the linear model

y = Y 0✓ + u,
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where Y is endogenous and y is a response scalar variable. We assume that we have an exogenous

set of instruments z. Define

u(✓) = y � Y 0✓.

The sample selection process is given by s = szsysY , i.e. a data point (y, Y, z) is available if and

only if all three variables are available. The classical condition for exogeneity is that

E(u(✓0)|s, z) = 0.

See p. 795 of Wooldridge (2010). However, this condition can be di�cult to verify in some contexts,

particularly in a dynamic panel setting such as the case presented in this paper. The alternative

condition

E(sysY u(✓0)|sz, z) = 0

can be much easier to verify and still leads to consistency. Recall that under the usual conditions,

the consistency of the GMM estimator of ✓ requires that E(szu(✓)) = 0 if and only if ✓ = ✓0. This

is easily proven,

E(szu(✓0)) = E(szzsysY u(✓0)) = E(szzE(sysY u(✓0)|sz, z)) = 0

On the other hand, for ✓ 6= ✓0,

E(szu(✓)) = E(szu(✓ ± ✓0)) = E(szu(✓0))� E(szY 0)(✓ � ✓0) = E(szY 0)(✓0 � ✓).

Therefore, it su�ces to have rank(E(szY 0)) = dim(✓), which is to say the instruments have a full

e↵ect on the endogenous variables in the observed sample.

B Sample selection corrections for IV estimators when � 6= 0 and

cov("it, uis 6= 0; s  t)

In this section we develop the required correction for dynamic models in which IV is strictly

necessary. For static model corrections see either Wooldridge (1995) for the RE case and Rochina-

Barrachina (1999) for the FD case.

B.1 Recap of a dynamic model

Consider we have interest in an outcome variable y⇤, which is related to its lagged value, and other

variables included in the vector x.
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y⇤it = ⇢y⇤it�1 + xit� + ↵i + "it for ti s.t. dit = 1; (61)

where d is the selection variable and ↵i is an individual heterogeneity component independent of

"it, the error term. ⇢, � are parameters. x can be correlated with both the individual heterogeneity

component and the error term. In addition we define !it = ↵i + "it. Finally, note that when ⇢ = 0

we get the static model.

the observability of y⇤ is driven by the model for d, which is given by

d⇤it = zit� + xit� + ⌘i + uit = wit⇡ + ⌘i + uit; dit = 1 [d⇤it � 0] (62)

where w (which combines z and x, being x?z) is a vector of strictly exogenous regressors (with

respect to u once we allow for w to be correlated with ⌘i), ⌘i is a term capturing unobserved

individual heterogeneity and uit is an error term. Assumptions about the components of (61) and

(62) will be given in the next subsections.

Furthermore, in general, ⌘i+uit and ↵i+"it can be serially cross-correlated, that is cov("it, uis 6=
0; s  t.

B.2 General assumptions for the selection equation

•A1: The conditional expectation of ⌘i given w̄i is linear.

Following Mundlak (1978), it is assumed that the conditional expectation of the individual e↵ects

in the selection equation is linear in the time means of all exogenous variables:41 ⌘i = w̄i✓ + ci,

where ci is a random component independent of wi.

•A2: The errors in the selection equation, ⌫it = uit+ci, are independent of wi and normal
�
0,�2t

�
.

Under A1 and A2 the reduced form selection rule of (62) is d⇤it = wit⇡ + w̄i✓ + ⌫it, dit =

1 {wit⇡ + w̄i✓ + ⌫it � 0} = 1 {Hit + ⌫it � 0}.

The reduced form selection rule d⇤it = wit⇡t + w̄i✓t + ⌫it is not only compatible with A1 (to allow

the w to be correlated with the individual e↵ect in the selection equation) but also with a dynamic

model for the selection rule such as: d⇤it = ⇢dd
⇤
it�1 +wit⇡t + ⌘i + uit, where d⇤i0 = w̄i⇡0 + ui0 (initial

condition) and ⌘i = w̄i✓+ ci (as in A1 ). In this case ⌫it will be a function of ui0, ..., uit, ci, but still

independent of wi.

B.3 Correction of biases

B.3.1 Correction of the first di↵erenced (FD) equations

Let us consider the first-di↵erenced model:

�yit = ⇢ ·�yit�1 +�xit� +�"it (63)

41Alternatively, we can use Chamberlain’s (1980) approach.
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We will need a sample of individuals with dit = dit�1 = dit�2 = 1, and, therefore, in general the

sample selection correction term will come from a trivariate probit:

�yit = ⇢ ·�yit�1 +�xit� + E [�"it |wi, dit = dit�1 = dit�2 = 1] +�eit (64)

We follow Tallis (1961) to work it out E [�"it |wi, dit = dit�1 = dit�2 = 1] under a 4-variant normal

distribution assumption:42

Assumption •A4”’: The errors [�"it, ⌫it, ⌫it�1, ⌫it�2] are 4-variate normally distributed and inde-

pendent of wi.

Therefore,

E [�"it |wi, dit = dit�1 = dit�2 = 1] = ��"
t

,
⌫

t

�

t

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+��"
t

,
⌫

t�1
�

t�1

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + ��"
t

,
⌫

t�2
�

t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)

(65)

where His = wis⇡ � E(⌘i|wi) for s = t, t� 1, t� 2, and,

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) =
�(H

it

)�2

⇣
(H

it�1�%
t,t�1H

it

)
.
(1�%2

t,t�1)
1/2

,(H
it�2�%

t,t�2H
it

)
.
(1�%2

t,t�2)
1/2

,%
t�1,t�2.t

⌘

�3(H
it

,H
it�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)

,

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) =
�(H

it�1)�2

⇣
(H

it

�%
t,t�1H

it�1)
.
(1�%2

t,t�1)
1/2

,(H
it�2�%

t�1,t�2H
it�1)

.
(1�%2

t�1,t�2)
1/2

,%
t,t�2.t�1

⌘

�3(H
it

,H
it�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)

,

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) =
�(H

it�2)�2

⇣
(H

it

�%
t,t�2H

it�2)
.
(1�%2

t,t�2)
1/2

,(H
it�1�%

t�1,t�2H
it�2)

.
(1�%2

t�1,t�2)
1/2

,%
t,t�1.t�2

⌘

�3(H
it

,H
it�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)

where � () is the standard normal density function, and �2 (), �3 () are the standard bivariate and

trivariate normal cumulative distribution functions, respectively. The %t,t�1, %t,t�2, %t�1,t�2 are all

the possible correlation coe�cients between the errors in the selection equation in the three time

periods.

To construct estimates of the � () terms, first, the coe�cients in the Hs will be jointly determined

with %t,t�1, %t,t�2, %t�1,t�2, using a trivariate probit for the three time periods. Doing this we will

get a predicted value for the trivariate probability �3 (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) that

appears in the denominator of the � () terms. Second, we will get also estimates for the two

arguments of the type (His � %t,sHit)
.�

1� %2t,s
�1/2

in the bivariate probabilities �2 (). Third,

we will perform all the involved bivariate probabilities �2 () and estimate the partial correlation

coe�cients %t�1,t�2.t, %t,t�2.t�1, %t,t�1.t�2 for fixed Hit, Hit�1, Hit�2, respectively. Fourth, we will

42In fact, by assuming a linear projection of the errors in the main equation �"

it

on the errors in the selec-
tion equations in t , t � 1 and t � 2 , we do not need a 4-variant normal distribution for the errors in both
equations [�"

it

, ⌫

it

, ⌫

it�1, ⌫it�2], but only a trivariate normal distribution for the errors in the selection equation
(⌫

it

, ⌫

it�1, ⌫it�2).
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get a predicted value for the bivariate probabilities �2 () that are in the numerators of the � ()

terms multiplied by the corresponding � (His).

Under stationarity �"
t

,
⌫

t

�

t

= �"
t�1,

⌫

t�1
�

t�1

, and we will call it �0. Now (65) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�0 {� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)}
��

"
t�1,

⌫

t,2
�

t

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + �"
t

,
⌫

t�1
�

t�1

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+�
"
t

,
⌫

it�2
�

t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)� �
"
t�1,

⌫

it�2
�

t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)

(66)

In this equation the correlation �"
t�1,

⌫

t

�

t

does not have to be equal to the correlations �"
t

,
⌫

t�1
�

t�1

=

�
"
t�1,

⌫

it�2
�

t�2

, or �
"
t

,
⌫

it�2
�

t�2

, but let us call �"
t�1,

⌫

t

�

t

= �+1, �"
t

,
⌫

t�1
�

t�1

= �
"
t�1,

⌫

it�2
�

t�2

= ��1, and �"
t

,
⌫

it�2
�

t�2

=

��2 under stationarity.

Then equation (66) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�0� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� �0� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

��+1� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + ��1� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+��2� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)� ��1� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) =

(�0 � �+1)� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� (�0 � ��1)� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+ (��2 � ��1)� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)
(67)

Further, if we assume an exchangeability condition like the one in Kyriazidou (1997), this implies

�+1 = ��1 (let us call them simply �) and in this case equation (67) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�̄ {� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)}
+�̄�2� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)

(68)

where �̄ = �0 � � and �̄�2 = ��2 � �. That means that correcting for sample selection with

longitudinal correlation of the errors increases the dimension of regressors in two.

Importantly, when there is no serial cross-correlation between the errors in the outcome and the

selection equation, %t,t�1 = %t,t�2 = %t�1,t�2 = 0, also %t�1,t�2,t= %t,t�2,t�1= %t,t�1,t�2 = 0, and we

have that

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit) /� (Hit) = � (Hit) ,

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit�1) /� (Hit�1) = � (Hit�1) ,

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit�2) /� (Hit�2) = � (Hit�2) ,

Therefore, the corrected outcome equation (65) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] = �("
t

), ⌫t
�

t

� (Hit)� �("
t�1),

⌫

t�1
�

t�1

� (Hit�1) (69)
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and the model simply has to include as new regressors correcting for sample selection the standard

Heckman lambda terms coming from univariate probits in t and t-1. Under stationarity (69)

becomes �0 {� (Hit)� � (Hit�1)}.

B.3.2 Correction of the level equations

let consider now the estimation of the levels equations.

yit = ⇢yit�1 + xit� + z̄i + E [!it |zi, dit = dit�1 = dit�2 = 1] + eit =

⇢yit�1 + xit� + z̄i + �!
t

,
⌫

t

�

t

� (Hit, Hit�1, %t,t�1) + �!
t

,
⌫

t�1
�

t�1

� (Hit�1, Hit, %t,t�1) + eit
, (70)

Assumption •A4”: The errors [!it, ⌫it, ⌫it�1] are trivariate normally distributed and independent

of zi.

Under stationarity �!
t

,
⌫

t

�

t

= �0 and �!
t

,
⌫

t�1
�

t�1

= ��1, and (70) becomes:

yit = ⇢yit�1 + xit� + w̄i + �0� (Hit, Hit�1, %t,t�1) + ��1� (Hit�1, Hit, %t,t�1) + eit (71)

To construct estimates of the � () terms the coe�cients in the Hs will be jointly determined with

%t,t�1, using a bivariate probit for each pair of time periods.

Importantly, when the errors in the outcome and selection equations are not time-series correlated

%t,t�1 = 0, then ��1 = 0, and (70) becomes:

yit = ⇢yit�1 + xit� + w̄i + E [⌫it |zi, dit = 1] + eit =

⇢yit�1 + xit� + w̄i + �0� (Hit) + eit
(72)

and we come back again to univariate probits per each t.

B.4 Summary and empirical guidelines

When the errors in the outcome and selection equations are (cross) serially correlated (that is, when

cov("it, uis 6= 0; s < t) we generally require sample selection correction terms that require estimation

of a trivariate probit and we need at least 3 periods per individual. For the di↵erences equation

estimation, the relevant samples are constructed by picking up at least three consecutive treatment

outcomes or alternatively three non-treatment outcomes per individual. When after selecting the

observations in this way the treatment sample is not large enough to allowing the identification of

the relevant parameters of the equation, we estimate this equation by levels estimation exploiting

only the extra moment conditions of System-GMM (Arellano and Bover, 1995; Blundell and Bond,

1998) versus GMM (Arellano and Bond, 1991). In the latter case we require samples with two

consecutive outcomes of the same regime. In case of having enough sample to obtain the first

di↵erence estimator we can improve e�ciency by combining the moment conditions coming from

the levels and the first-di↵erenced equations by System-GMM estimation (Arellano and Bover,

1995; Blundell and Bond, 1998).
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B.4.1 Using standard software

In the first di↵erences model, under the assumption that cov("it, uis = 0; s < t) and assuming sta-

tionarity, (69) can be estimated with the xtabond Stata GMM command. In the more general sta-

tionary only case (68) can be estimated with a modified version of the xtabond command allowing for

the two regressors: {� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)},
� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2). With System-GMM estimation, and under stationarity

only, we could think about joint estimation with (72) and (69) with the xtdpdsys Stata System-

GMM command if we restrict the level sample in the same way than the first di↵erenced one.

However, the Stata command have to be adapted to allow for di↵erent coe�cients of the sample

selection correction terms in the equation in levels (�!
t

,
⌫

t

�

t

in (72)) than in the equation in time

di↵erences (�"
t

,
⌫

t

�

t

in (69)).

Under Simplification 1, it will be more di�cult to adapt standard software because, in addition

to adding di↵erent regressors to the levels ({� (Hit, Hit�1, %t,t�1) ,� (Hit�1, Hit, %t,t�1)}) and the dif-

ferences equations ({� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)},
� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2), we have to allow for di↵erent parameters associated

to the sample selection correction terms in level and di↵erenced equations.

B.5 Semiparametric model estimation

B.5.1 Correction of level equations

Consider the level model:

yit = ⇢yit�1 + xit� + z̄i + E [!it |wi, dit = dit�1 = 1] + eit,

where the conditional mean is now an unknown function of the selection indices Hit, Hit�1, that

is:

E [!it |wi, dit = dit�1 = j ] = 'jt,t�1 (Hit, Hit�1) = 'jit,t�1

Errors can depend on the wi only through these indices (what is called a “double index”

assumption). Now (70) will become

yit = ⇢yit�1 + xit� + z̄i + 'jit,t�1 + eit

The unknown function 'jit,t�1, once the selection indices size has been reduced by a normal,

logistic or the Heckman’s lambda (inverse Mill’s ratio) transformation of the selection indices, is

approximated non-parametrically by a polynomial of degree q on the transformation of the indices

Hit, Hit�1.43 We could estimate the first step also by probits or a semiparametric method for binary

choice with panel data.

43In the general case of absence of stationarity, we will interact the terms of the polynomial with time-pair dummies.
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B.5.2 Correction of first di↵erenced equations

Consider the first di↵erenced model:

�yit = ⇢�yit�1 + �xit� + E [�"it |wi, dit = dit�1 = dit�2 = j ] + �eit, where instead of giv-

ing a parametric expression for E [�"it |wi, dit = dit�1 = dit�2 = j ] in (65) we could have written

E [�"it |wi, dit = dit�1 = dit�2 = j ] = 'jt,t�1,t�2 (Hit, Hit�1, Hit�2) = 'jit,t�1,t�2, where the con-

ditional mean is now an unknown function of the selection indices Hit, Hit�1, Hit�2. Errors can

depend on the wi only through these indices (what is called a “triple index” assumption).

Now (64) will become �yit = ⇢�yit�1 + �xit� + 'jit,t�1,t�2 + �eit. The unknown function

'jit,t�1,t�2, once the selection indices size has been reduced by a normal, logistic or the Heck-

man’s lambda (inverse Mill’s ratio) transformation of the selection indices, is approximated non-

parametrically by a polynomial of degree q on the transformation of the indices Hit, Hit�1, Hit�2.44

We could estimate the first step also by probits or a semiparametric method for binary choice with

panel data.

Besides the (parametric or semi-parametric) specification of the sample selection correction terms,

the models will be finally estimated by GMM (AB) or system-GMM (when ⇢ 6= 0 and/or x is

endogenous) or RE,FE,FD (when ⇢ = 0 and x is exogenous).

C The variance of corrected estimators

Assume that the relationship among variables, instruments and parameters (for l = 1, . . . , L

moments) is given by the following expression:

ml (yi, xi, zi, ✓) =
1

N

NX

i=1

mil (yi, xi, zi, ✓) =
1

N

NX

i=1

mil (✓)

Then, we can define the objective function, for instance, as:

q =
LX

l=1

m2
l

with

ml =
1

N

NX

i=1

mil (✓) = 0

We choose ✓ which minimises:
44In the general case of absence of stationarity, we will interact the terms of the polynomial with time-triples

dummies.
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q = m (✓)
0
Am (✓)

with A being any semi-definite positive matrix, which is not a function of ✓. We can choose the

asymptotic variance of m (.), say W , so that the estimator solving the problem:

q = m (✓)
0
W�1m (✓)

is the GMM estimator. The best option for the variance-covariance matrix of the GMM esti-

mator, as suggested by Hansen (1982), is:

VGMM =
h
G

0
W�1G

i�1

where G is a matrix of derivatives whose j row is:

Gjl =
@ml (✓)

@✓0

Because the criterion is linear in ✓, the solution for ✓̂ can be expressed linearly, and its variance-

covariance matrix is
h
X

0
Z1ŴZ

0
1X

i
, where Z1 is the matrix of instruments, and all matrices should

be defined conditional on the selected sample. The optimal choice for Ŵ is
h
Z

0
ûû

0
Z
i
. Because we

estimated in a first step �̂it(zit�̂), using univariate probits for each T , we must correct Ŵ to take

that into account. We can do this correction using the scores of the likelihood function for this

parameter evaluated at the optimal maximum likelihood estimates. If Z is the matrix of exogenous

regressors used to adjust the probit model, we can use for the correction, for instance, Z
0
CZ, with

C =
1

N

NX

i=1

@lit@lis
@�t@�

0
s

where lit is the likelihood function for individual i in period t. A simpler alternative to calculate

the estimated asymptotically correct covariance matrix of the first-di↵erenced GMM and system

GMM estimators after correcting for sample selection, which we used here according to Terza

(2016). It involves the scores of the likelihood function at each period, but there is no need to
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calculate C.

Table A1. Average moment conditions of simulated errors and most recent instru-

ments

N = 500 E(�"ityit�2/Ait) E((↵i + "it)�yit�1/Ait) E("it�yit�1/Ait) E(↵i�yit�1/Ait)
corr("it, uit) = 0.242 = corr(↵i, ⌘i)
⇢ = 0.25 -.0021 .0020 .0015 .0004
⇢ = 0.50 -.0036 .0008 .0017 -.0009
⇢ = 0.75 -.0071 .0001 .0019 -.0018
corr("it, uit) = 0.242; corr(↵i, ⌘i) = 0
⇢ = 0.25 -.0021 .0020 .0015 .0005
⇢ = 0.50 -.0037 .0018 .0017 .0002
⇢ = 0.75 -.0071 .0020 .0019 .0001
corr("it, uit) = 0.447 = corr(↵i, ⌘i)
⇢ = 0.25 -.0011 .0012 .0019 -.0007
⇢ = 0.50 -.0025 -.0014 .0030 -.0044*
⇢ = 0.75 -.0057 -.0037 .0042** -.0079***
corr("it, uit) = 0.447; corr(↵i, ⌘i) = 0
⇢ = 0.25 -.0011 .0025 .0019 .0006
⇢ = 0.50 -.0026 .0031 .0030 .0001
⇢ = 0.75 -.0057 .0042 .0042** -.0000

N = 5000 E(�"ityit�2/Ait) E((↵i + "it)�yit�1/Ait) E("it�yit�1/Ait) E(↵i�yit�1/Ait)
corr("it, uit) = 0.242 = corr(↵i, ⌘i)
⇢ = 0.25 .0016 -.0001 -.0001 -.0015***
⇢ = 0.50 .0019 -.0019** .0003 -.0022***
⇢ = 0.75 .0035 -.0022** .0008 -.0030***
corr("it, uit) = 0.242; corr(↵i, ⌘i) = 0
⇢ = 0.25 .0015 -.0009 -.0001 -.0008
⇢ = 0.50 .0019 -.0006 -.0003 -.0009
⇢ = 0.75 .0034 -.0002 .0008 -.0009*
corr("it, uit) = 0.447 = corr(↵i, ⌘i)
⇢ = 0.25 .0017 -.0019* .0014* -.0033***
⇢ = 0.50 .0022 -.0035*** .0027*** -.0062***
⇢ = 0.75 .0044 -.0051*** .0041*** -.0091***
corr("it, uit) = 0.447; corr(↵i, ⌘i) = 0
⇢ = 0.25 .0016 .0005 .0014* -.0008
⇢ = 0.50 .0020 .0017* .0027*** -.0010
⇢ = 0.75 .0041 .0030*** .0041*** -.0011*

Notes.

1. 1000 simulations.

2. Static selection model (A).
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3. A
it

= {z
it

, d

it

= d

it�1 = d

it�2 = 1}.

4. *** significant at 1%; ** significant at 5%; * significant at 10%.
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