

Going green through local fiscal equalisation

JULIO LÓPEZ-LABORDA ANDONI MONTES-NEBREDA JORGE ONRUBIA

Documento de Trabajo 2023/07 Octubre de 2023

Las opiniones recogidas en este documento son las de sus autores y no coinciden necesariamente con las de Fedea.

Going green through local fiscal equalisation

Julio López-Laborda Universidad de Zaragoza & Fedea

Andoni Montes-Nebreda Ituna Center (UPV/EHU) & ICEI-UCM

Jorge Onrubia Complutense Institute of International Studies (ICEI-UCM) & Fedea

September, 2023

Abstract

Success of centrally set environmental objectives requires the engagement of subnational governments. However, they often do not have the capacities or the incentives to apply ambitious climate mitigation and adaptation policies. Indeed, stricter environmental policies can lead to a decrease in local revenue collection as a consequence of the reduced activity resulting from the correction of externalities. To address this issue, in the line of Ecological Fiscal Transfers, we propose the inclusion of incentives linked to environmental objectives in local equalisation that would compensate for the opportunity costs faced by municipalities. In particular, we suggest greening fiscal equalisation by including a multidimensional index of local environmental performance that could be complemented by a green expenditure needs component as criteria for the allocation of equalisation grants. To illustrate how this proposal would work, we examine the financial effect that environmental fiscal equalisation would have had across Basque municipalities for the 2016-2019 period. As a main result, we find that less sustainable cities could lose up to the 5% of their per capita transfers, while small and most sustainable municipalities could win up to 13% of their per capita allocations.

Keywords: fiscal equalisation, environmental policy, green transition, local public finances, fiscal federalism.

JEL Codes: H23, H7, H71, H77, Q53, R51.

Acknowledgements: The authors acknowledge the Foral Government of Bizkaia for providing useful data for this research and Ángel de la Fuente for his comments and thorough review of the paper. Julio López-Laborda acknowledges funding from the Government of Aragón, through research project S23_23R.

Resumen ejecutivo

La transición ecológica ha ido escalando lugares en la agenda pública durante los últimos años, hasta situarse como una de las principales prioridades para ciudadanos e instituciones. Debido a la sólida evidencia científica y a la cada vez más frecuente sucesión de fenómenos climáticos extremos, los responsables públicos han adquirido compromisos más ambiciosos para frenar el calentamiento global en particular, y el deterioro del medio ambiente en general. El Acuerdo de París, el Pacto Verde Europeo o la Agenda 2030 y sus Objetivos de Desarrollo Sostenible (ODS) son buenos ejemplos de ello. La mayor parte de estos objetivos han sido consensuados a nivel internacional (y supranacional, en el caso de la Unión Europea). Sin embargo, buena parte de la responsabilidad competencial sobre las políticas necesarias para cumplir con esos compromisos reside en los gobiernos regionales y locales. Así, materias como el urbanismo y los usos del suelo, la movilidad o la gestión de residuos, claves para la transición ecológica, tienen un componente preeminentemente subnacional.

Esta dicotomía entre qué nivel de gobierno adquiere los compromisos ambientales y cuál debe ser el responsable de ejecutar después las políticas concretas es algo natural e innato a los sistemas de gobernanza descentralizada. Sin embargo, si los gobiernos regionales y locales carecen de medios para contribuir con su acción al cumplimiento de los objetivos ambientales, o si las agendas políticas de los distintos niveles gobierno están desalineadas, puede ponerse en riesgo el éxito de la agenda verde.

Los datos más recientes provistos por la OCDE y el Comité de las Regiones de la Unión Europea apuntan a que el progreso en el cumplimiento de los ODS ambientales no avanza al ritmo que cabría esperar. Entre las causas, se identifica, por un lado, que los gobiernos subcentrales, y particularmente los ayuntamientos más pequeños, carecen de medios humanos y económicos suficientes para diseñar e implementar las políticas ambientales con la ambición y celeridad necesarias. Por otro lado, buena parte del conjunto de medidas ambientales afecta de forma negativa a la capacidad fiscal local, en la que el Impuesto de Bienes Inmuebles ocupa el primer lugar por volumen de recaudación. Por ello, los ayuntamientos podrían tener incentivos para no aplicar las políticas ambientales necesarias, con el objetivo de preservar su capacidad de recaudación fiscal, al menos en el medio plazo.

Este Documento de Trabajo discute la posible utilización de los sistemas de financiación, en este caso local, como herramienta para tratar este problema. En concreto, sugerimos vincular los fondos de nivelación fiscal transferidos a los ayuntamientos a los resultados ambientales logrados por estos y a su mejora. De esta forma, los municipios más sostenibles o que muestren mayores mejoras en materia medioambiental recibirían más fondos, con el objetivo de compensar las potenciales pérdidas de recaudación que las políticas verdes pudieran generar en sus presupuestos. Esta propuesta bebe de la experiencia de las Transferencias Fiscales Ecológicas (conocidas como *Ecological Fiscal Transfers*, en inglés), nacidas en el estado brasileño de Paraná en el año 1991, y hoy extendidas a países como Francia, Portugal, China o India, donde la fórmula de reparto considera variables como el porcentaje de suelo ocupado por bosques o parques naturales, o la calidad del aire y del agua. A pesar de estar cada vez más extendidas, las Transferencias Fiscales Ecológicas aún no se han implementado en España.

Debido a la disponibilidad de datos, este Documento de Trabajo aplica la propuesta, como ilustración, a los sistemas de financiación local de Euskadi, aunque su lógica es igualmente válida para el Sistema de Financiación Autonómica o Local de régimen común. De implementarse, siguiendo el ejemplo portugués, el 5% de las trasferencias recibidas por los ayuntamientos pasarían a distribuirse según un Índice de Sostenibilidad Local (*LSI*, por sus siglas en inglés) que construimos con variables en los ámbitos relacionados con el medioambiente como agua, calidad del aire, energía, transporte y movilidad, presión turística, uso del suelo, y residuos, para el periodo 2016-2019. Según nuestros cálculos, los municipios más sostenibles podrían ver incrementadas sus trasferencias hasta en un 13%, mientras que aquellos con un peor desempeño podrían perder hasta el 5% de su asignación actual.

Finalmente, se introduce la posibilidad de extender el LSI más allá de la compensación del coste de oportunidad de la capacidad fiscal, vinculado a la mitigación climática, para nivelar además las necesidades de adaptación, más ligadas a la nivelación de necesidades de gasto, como el riesgo de sufrir inundaciones o los efectos de las sequías.

En términos generales, los resultados de este ejercicio sugieren que una reforma verde de la nivelación local podría ser positiva no solo para su eficiencia, sino también para la equidad entre municipios. Desde el punto de vista de la eficiencia, la internalización de las externalidades ambientales a través del sistema de nivelación, gracias al establecimiento de un esquema de incentivos más sostenible, generaría una mejora del bienestar social agregado. La reforma también supondría un avance desde la perspectiva de la equidad, al considerar de una forma más holística la capacidad fiscal y las necesidades de gasto relacionadas con el medio ambiente, hasta ahora ignoradas. Además, en el caso de Euskadi, obtenemos que la dispersión entre municipios de la distribución per cápita de las transferencias se vería reducida. Es decir, la desigualdad en el volumen de fondos por habitante recibidos por cada ayuntamiento disminuiría, beneficiando a las ciudades intermedias, más sostenibles que las grandes capitales y los municipios más pequeños.

1. Introduction

Ecological transition is one of the challenges policymakers are trying to address within the United Nations' Sustainable Development Goals (SDG) agenda. The pre-pandemic momentum of increased environmental awareness facilitated international agreement on more stringent green objectives. The signature of the Paris Agreement, or the launching of the European Green Deal, are important examples of this trend.

Climate change is a global problem to be tackled by measures at the global level. However, other environmental issues, such as natural landscape, biodiversity and ecosystem protection, energy consumption, water quality, waste production and management, or air quality, have a preeminently local scale. Although most objectives in these areas are set at the international or national levels, following a top-down approach, responsibility for the design and implementation of the policies required to attain them is shared across several levels of government or falls on cities (OECD, 2020).

Therefore, success in achieving environmental goals requires local governments' engagement with the green agenda. Current results, however, are not promising, as only a few municipalities have implemented comprehensive plans for ecological transition. In fact, central mandates for compulsory plans, political willingness, and city size are the main drivers for their existence (Tang et al., 2010; Reckien et al., 2018). This can be explained both by the incentive scheme that guides local governments' policymaking and their limited capacities, particularly in the case of smaller municipalities. Following the political economy approach adopted by the Second-Generation Theory of Fiscal Federalism, local governments' objective function can be assumed to depend on the size of their budget (Niskanen, 1971) and the welfare of residents within their jurisdiction (Oates, 2005). In this framework, municipalities may refrain from taking more ambitious and decided environmental protection measures in order to protect their budgetary capacity, since local tax bases (e.g. real estate or car ownership) could be negatively affected by environmental protection policies (Ring, 2008b; Busch, 2021) which may hinder economic activity (Azzoni and Isai, 1994; Ferraro, 2002; Adams et al., 2010; Karsenty et al., 2014; Nikitina, 2019; Canan and Ceyhan, 2020). The loss of tax revenue resulting from the reduction in activity associated with the correction of externalities can be interpreted as the opportunity cost that local governments face when implementing effective environmental policies.

Following the rationale for households' income compensations suggested by the political economy literature (Clinch et al., 2006; Caratini et al., 2019) to gather popular support for the ecological transition, which is at the core of the European Green Deal (Montes and Moreno, 2022), some countries have created conditional intergovernmental grant frameworks for subnational governments, which are allocated on the basis of a diverse range of environmental variables. They are the so called Ecological Fiscal Transfers (EFT). Although they are still uncommon, their use is on the rise, having been already adopted in Indonesia (Mumbunan et al., 2012; Ardiansyah and Jotzo, 2013), Portugal (Santos et al., 2012), India, France, China (Busch et al., 2021), and some Brazilian states (Ring, 2008a; May et al., 2013; Droste et al., 2017) and German regions (Ring, 2008b). However, most experiences in this line have been of limited scale and have been implemented as *ad hoc* earmarked grant schemes, rather than as part of comprehensive fiscal equalisation schemes. Consequently, large-scale and systematic linkages between budget and environmental goals have not yet been introduced (Busch et al., 2021; Smoke and Cook, 2022).

Most schemes compensate municipalities for increased expenditure needs related to the establishment and management of local protected areas, for the interjurisdictional positive spillovers generated by so called "ecosystem services" (Ring, 2008b; Loft et al., 2014), or for the opportunity cost on revenue losses caused by the implementation of more severe environmental protection policies (Busch et al., 2021). This paper proposes fiscal equalisation as an appropriate tool to scale-up the path opened by EFTs, and to set more adequate incentives for local municipalities to better align their policies with international and national ecological agendas. First, we propose using the fiscal capacity component of fiscal equalisation as the instrument to support mitigation, thus compensating municipalities for the negative impact (opportunity cost) local environmental policies could generate in their own tax revenue. In addition, we suggest complementing the above component with an indicator of increased expenditure needs related to climate change adaptation, based on risks linked to extreme climate events. In order to illustrate the proposal, we make use of the rich variety of environmental variables integrated in a database for 251 Basque municipalities to build and apply a synthetic multidimensional green indicator. Then, we examine the budgetary impact of the proposed environmental fiscal equalisation reform. We find that less sustainable cities could lose up to 5% of their per capita transfers, while small and more sustainable municipalities could increase their per capita allocations by up to 13%.

The paper is structured as follows. Section 2 gives context on the green local agenda. Section 3 introduces Ecological Fiscal Transfers and discusses the pros and cons of introducing environmental components into fiscal equalisation schemes. Section 4 provides a thorough justification of our proposal of introducing an environmental component into local equalisation systems, both from the side of fiscal capacity (mitigation) and expenditure needs (adaptation). The following sections are devoted to developing the proposal and applying it to the Basque local equalisation system, for which sufficient information is available. To this aim, Section 5 briefly describes the Basque local funding system. Section 6 explains the methodology used to build a synthetic multidimensional green indicator (the Local Sustainability Index), presents some descriptive statistics, and estimates the impact the reform proposal would have had on Basque municipalities' funding during the 2016-2019 period. In Section 7, results are assessed together with the budgetary effects of this environmental fiscal equalisation proposal in terms of winners and losers. Finally, Section 8 concludes, gathering some policy recommendations and suggestions for further research.

2. The green local agenda

The global scope of Climate Change has led to the adoption of international agreements to reduce Greenhouse Effect Gas Emissions (GHG) to contain global warming to 1.5° C degrees by the end of the XXI century, as in the Paris Agreement. At the supranational level, European Union member states have committed to reach ambitious reductions of GHG for 2030 and to be net carbon neutral in 2050. Due to the large geographical externalities of climate mitigation policies, the scope of most important measures to pursue these targets, such as green investments on environmental infrastructure or innovation, are being designed and implemented far from subnational governments (SNGs) (Martinez-Vazquez, 2021).

However, the environmental agenda is not limited to climate change, and in fact involves a full range of other environmental challenges. Among them, are those relating to natural landscape, biodiversity and ecosystem protection, energy consumption, resources, water, waste production and management, or air quality. In contrast to global warming, these problems are

more localized, as shown by Table 1. Consequently, attaining ecological transition commitments will require the engagement of local governments. In fact, according to the OECD (2020), at least 105 of the 169 SDGs targets will not be attained without subnational governments' involvement.

Policy area	Target-setting	Design	Implementation	Funding
Climate change (decarbonization)	International, supranational, national	National	National	Supranational, national
Energy saving (consumption)	Supranational, national	National	Regional, local	National, regional
Land use, resources, biodiversity and ecosystem protection	Supranational, national	National	Regional, local	National, regional, local
Water	Supranational, national	National, regional	Local	National, regional, local
Waste management	Supranational, national	National, regional	Local	Local
Air quality	Supranational, national	National	Local	Local

Table 1. Environmental policy responsibility attribution across levels of government

Source: own elaboration, based on De Mello and Ter-Minassian (2023) and Dougherty and Montes-Nebreda (2023).

Local involvement on the green agenda could just mean coordination and harmonisation of practices. However, in those policy areas in which subnational governments have shared or exclusive responsibility to design and implement policies, their incentives and capacity to pursue targets, which are often designed in a top-down basis, are even more relevant. Indeed, according to OECD (2020) data, SNGs are responsible for almost 60% of total public investment, including investment related to ecological transition, and for around 40% of public expenditure executed at the OECD.

An example of the top-down approach is the mandate set by the Spanish Climate Change Law (art. 14.3.a) for cities of more than 50,000 inhabitants, and smaller ones (>20,000 inhabitants) with bad air quality statistics, to implement Low Emission Zones (LEZ) by 2023. For that purpose, municipalities will receive 2,916 million euros in support from European Union's Next Generation Funds, as stated by the Spanish Recovery, Transformation and Resilience Plan (Spanish Government, 2020). In addition, the Central Government's guidelines for LZEs implementation, encourages municipalities to introduce congestion charges as a complementary policy (MITECO, 2021).

However, despite the importance of subnational governments' role on attaining environmental targets, figures for regions and cities' compliance with SDGs show there is still work to do. For instance, in 2019 only 20% of OECD regions had achieved 2030 targets on responsible consumption (SDG12), no region had achieved 2030 objectives on climate action (SDG13), and 70% of cities had not achieved any of the 17 SDGs targets for 2030. These figures are even more worrying when realising that environment-related SDGs are reportedly the top priority for 73% of SNGs, according to OECD-CoR survey data (OECD, 2020).

There are two main channels that explain why, although SNGs are sensitive and committed to environmental issues, this is not translated into outcomes. The first one has to do with the lack of incentives. Currently, local policy agendas are not guided by an incentive scheme that rewards environmental action. Consequently, there is an agenda misalignment across levels of government. The second-Generation Theory of Fiscal Federalism has extensively addressed this phenomenon by making use of public choice theory and political economy to explain policymakers' behaviour and analyse its determinants (Oates, 2005). The literature has conceptualised this situation as a principal-agent problem (Schick, 1998), where, in contrast to central government's, the utility maximisation formula followed by local policymakers only accounts for local interest, and only for the short term, as in the long-term environmental policies will deliver local wellbeing too (EEA, 2007; Stern, 2007).

For local governments, there is an opportunity cost of protecting the environment (Azzoni and Isai, 1994; Ferraro, 2002; Adams et al., 2010; Karsenty et al., 2014; Nikitina, 2019; Canan and Ceyhan, 2020) in terms of foregone tax revenue (Ring, 2008b; Busch, 2021). The most straightforward case is the impact of sustainable land use policy on local property taxes. Devoting a larger share of the land of a municipality to protected natural spaces, excludes the possibility of using them for residential, industrial or other business-related activities, and thus, it is likely that less property tax will be raised. This is probably the most sizeable channel among those represented in Figure 1, since property taxes represents the largest own-revenue source for cities across the OECD (OECD, 2021). In fact, this is the reason why the most common variable to allocate EFTs is the share of protected natural areas (Busch et al., 2021). In short, as mentioned above, the loss of tax revenue resulting from the reduction in activity associated with the correction of externalities can be interpreted as the opportunity cost of implementing effective environmental policies.

The second channel through which local governments' awareness is not translated into policy action is the limited administrative capacity (Tang et al., 2010; Reckien et al., 2018; OECD, 2023). Particularly smaller municipalities do not have enough means (human, funding, know-how) to carry out their most elemental duties, such as water provision or urban waste management, so they usually need to delegate into supramunicipal entities. When tasks are even more complex, such as designing, implementing, monitoring and evaluating effective measures to contribute to the green agenda promoted by higher levels of government, then more problems arise. Both the former and latter channels could be addressed by compensations through environmental fiscal equalisation schemes.

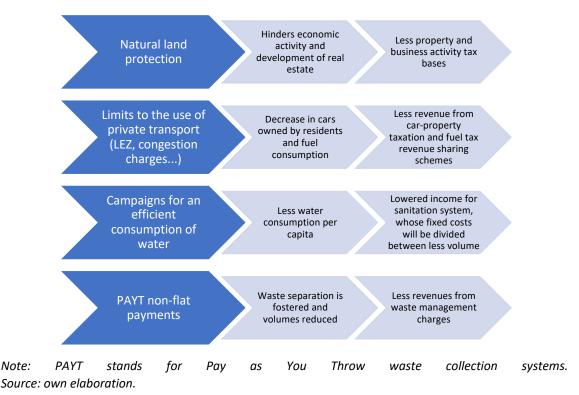


Figure 1. The opportunity cost of local environmental protection policies for local budgets

3. Ecological fiscal transfers

Due to the increasing salience environmental policy has gained during the last decades, scholars in Federalism have investigated the interactions between that topic and multilevel governance. The outcome is a line of research known as "Environmental Federalism" (Anderson and Hill, 1996; Harrison, 1996; Schberle, 1997). If we focus on the public finance aspect of federalism, some literature has become interested in the correlation between decentralisation levels and environmental policy ambition (Kunce and Shogren, 2008; Ardiansyah and Jotzo, 2013) and its results (Liu et al., 2017; He et al., 2017; Guo et al., 2020; Huang et Zhou, 2020).

However, if we follow the so-called Theory of Fiscal Federalism (Oates, 1972, 1999; Musgrave, 1983), then the main question posed by the previous literature has to do with possible ways in which intergovernmental fiscal relation instruments, particularly transfers, could help address environmental deterioration by supporting environmental protection policies (Ring, 2002, 2008a, 2008b; Mumbunan et al., 2012; Santos et al., 2012; Irawan and Tacconi, 2016; Busch et al., 2021). In our view, this is the key question to address in order to cope with the principal-agent problem of environmental agenda misalignment across levels of government explained in the previous section.

There are several forms to incorporate the environmental perspective in transfer allocation formulas. We will follow the classification criteria laid out by Ring (2002), according to which we could depict indirect or direct implementation of environmental variables. On the one hand, the former would use land extension or population density as proxies to internalise the positive spillovers ecosystem services provide to other jurisdictions and to the country as a whole. While these variables are often incorporated into grant allocation formulas, their actual link to

environmental goals is rather loose. On the other hand, there are at least three more direct ways to incorporate the environmental criteria:

- Earmarking certain share of funds devoted to vertical transfers to ecological and environmental services before any indicator come into play (Ewers et al., 1997; Rose, 1999).
- Including ecological functions as bases for calculating fiscal needs relevant for horizontal allocation (across jurisdiction) (e.g. to compensate regions for environmental damages, such as those caused by mining) (Busch et al., 2021).
- Earmarking a certain share of grants for environmental projects (e.g. waste disposal or water supply). For instance, this is the scope adopted by Next Generation EU funds, since a third of its total amount has to be spent in projects whose aim is to fight climate change. A similar approach has been used by some German lander to allocate funds to municipalities (Ring, 2001, 2002).

Regarding direct policies, a rich literature has been developed, which coined the concept of "Ecological Fiscal Transfers" (EFTs). This particular class of transfers are allocated according to environmental variables in order to compensate subnational governments for implementing environmental protection policies (expenditure needs), for the positive spillovers generated by them - following Olson's (1969) fiscal equivalence theory- (Ring, 2008b; Loft et al., 2014), and for the opportunity cost (Azzoni and Isai, 1994; Ferraro, 2002; Adams et al., 2010; Karsenty et al., 2014; Nikitina, 2019; Canan and Ceyhan, 2020) represented by revenue they could have raised if, for example, certain land areas would have been assigned to productive economic activities instead (fiscal capacity) (Ring, 2008b; Busch et al., 2021).

Some policy experiences implementing EFTs have been recorded already. The first experience emerged as a response to compensate for opportunity costs in the form of foregone revenues and took place in the Brazilian state of Parana in 1991 (Campos, 2000; May et al., 2012, 2013; Ring, 2008a). For 2020, 18 out of 27 states had adopted similar transfer programmes for municipalities. In the state of Acre, the share of transfers allocated according to environmental criteria reaches a high 20%. Other countries, such as Mongolia and Uganda, have recently introduced EFTs for expenditure needs and externality compensation, respectively, and in Australia, Poland, Switzerland or Ukraine proposals have been made (Busch et al., 2021). For its part, Droste et al. (2018a, 2019) suggested EU and international-level EFT implementation for spillover compensation.

Percentage or changes in natural protected area coverage is the predominant EFT allocation criteria. Also, most EFTs are earmarked grants, meaning that money received must be devoted to local natural conservation policies. Oppositely (and exceptionally), this is not the case in France, Portugal, and in some EFT programmes in India and Indonesia, where their EFTs are general-purpose grants (Busch et al., 2021).

However, there is no consensus on whether EFTs have achieved their goal. Droste et al. (2017) evaluated the Brazilian scheme and concluded that it increased the share of protected natural areas. For its part, Loureiro (2002) limited this positive direct effect to the first decade of the programme, suggesting there was a saturation effect. In contrast, May et al. (2012) found the opposite, and reported that in 10 out of the 13 Brazilian states analysed, the average number of new protected areas declined in absolute terms after the EFT scheme was introduced. Finally, in China, as reported by Busch et al. (2021), and contrary to Gong et al. (2020) and Yan and Honghua (2020), it was found that environmental quality improved in some provinces. Still, the

cross-province analysis for the whole China has shown mixed results, with reduced pollution (Cao et al., 2021; Chen et al., 2023) and improved water quality -mediated by local spending on environmental protection-, but no increases in natural land cover (Miao and Zhao, 2019).

3.1. Environmental fiscal equalisation

The main goal of equalisation schemes is to enable SNGs to cover their expenditure needs given their fiscal capacity. Fiscal capacity can be defined as the revenue that a SNG can obtain for a given fiscal effort. Expenditure needs can be defined as the amount of public expenditure a jurisdiction has to devote in order to provide a minimum/sufficient/average level of public services. Best practices suggest that potential variables and outcome measures should be used when possible in equalisation schemes (Boadway and Shah, 2007) in order to minimise the room for SNGs (and for the Central Government; Onrubia, 2016) to manipulate the formula in order to attract more transfers (Courchene and Beavis, 1973; Petchey and Levtchenkova, 2002 and 2004; Ferede, 2014).

Fiscal equalisation transfers have rarely been used to skew SNGs' agendas towards greener policies. France and Portugal are the only countries that have integrated EFTs in equalisation schemes. In these countries, green variables are not isolated but are mixed with the rest of variables, such as population or geographical data, used to allocate general purpose grants and represent a proxy for lowered fiscal capacity. In the case of the former, EFTs represent 15% of equalisation transfers paid to local governments. Nevertheless, the environmental component (natural protected areas) of the formula is used to determine the allocation of just a negligible 0.02% of total transfers received by French municipalities (Borie et al., 2014; Busch et al., 2021). This only slightly changed in 2019, when the programme increased its coverage by softening requirements to qualify for allocations. In the case of Portugal, the weight of EFTs is more relevant, reaching 5% of the General Municipal Fund, and the allocation variable is the percentage of land under nature protection (Santos et al. 2012; Busch et al., 2021). Droste et al. (2018b) found that Portuguese EFT had a positive impact on local-level protected areas, suggesting that the goal pursued by the policy was achieved.

There are several advantages to implementing intergovernmental incentives through fiscal equalisation in comparison to previously surveyed EFTs. First, they better respect the principle of subsidiarity and local self-government since they do not earmark grants to a specific expenditure function, which is particularly contraindicated in institutional frameworks with high quality of government. In fact, efficiency gains from better information, from policies tailored to local preferences and needs, and from increased accountability require expenditure autonomy (Oates, 1972). Second, grant earmarking is often accompanied by matching requirements (co-funding), which entails the risk of a lower take-up, as it is the case for regional policy funds or investment funding supported by EU grants (European Court of Auditors, 2020). Third, as argued by Cao et al. (2021), EFTs may help to stop the race to the bottom in environmental standards. Precisely, preventing policy competition across jurisdictions is one of the main effects identified for fiscal equalisation (Köthenbürger, 2002).

Fourth, *ad hoc* transfer schemes entail a higher risk of discretionality, in contrast with more transparent, stable, and predictable formula-based fiscal equalisation arrangements (OECD, 2021). In this line, it is recommended to use different fiscal tools for different goals, following the "one tool, one goal" rationale to avoid the risk of using an instrument to pursue contradictory goals or that due to multiple aims, none is achieved. Therefore, since the aim of environmental transfers is to compensate for increased expenditure needs (e.g. forest

conservation, adaptation to extreme climate events) or decreased fiscal capacity (e.g. opportunity cost of natural land use and protection, or climate mitigation), and this is the same objective of fiscal equalisation, it is then recommended to use the latter instrument rather than *ad hoc* schemes. In addition, EFTs are often of smaller size than fiscal equalisation frameworks, thus being able to generate more modest behavioural changes on SNGs. And finally, from a political economy perspective, reforming an already existing fiscal instrument is more feasible than creating a new one (Santos et al., 2012). Therefore, amending current fiscal equalisation frameworks would provide environmental incentives with more stability and would make it easier for them to spread across institutional frameworks.

On the contrary, there is one main argument against the inclusion of green components within fiscal equalisation formulas: unconditionality. By definition, fiscal equalisation transfers are unconditioned. Consequently, there is no guarantee that they will be spent on environmental protection policies, which could have a "double dividend" effect (Goulder, 1995). This is the main reason why, traditionally, earmarked EFTs have been more frequently used. It is true that this argument would affect the climate-adaptation expenditure needs component proposed as complementary in this paper. However, the aim of the proposed green fiscal capacity component of fiscal equalisation schemes, which is the core of this article, is not to support expenditure in environmental protection, but to compensate for the loss in tax bases suffered as a consequence, to avoid disincentives for local governments to commit to the green agenda set by higher levels of government.

4. A proposal for greening local fiscal equalisation

4.1. Fiscal capacity equalisation and climate mitigation policies

In both the French and Portuguese models, environmental fiscal equalisation is carried out from the fiscal capacity side. In other words, municipalities with large shares of land covered by protected status receive more funds, and grants are also tied to other proxies for revenue loss. The main argument is compensating local governments for the opportunity cost of protecting the environment. This concept has been extensively used by the literature on Environmental Economics (Azzoni and Isai, 1994; Ferraro, 2002; Adams et al., 2010; Karsenty et al., 2014; Nikitina, 2019; Canan and Ceyhan, 2020). The opportunity cost equates to the economic cost of economic activity restrictions imposed by environmental protection policies. This utility loss for firms and households equals the amount of their surplus eliminated by the internalization of a negative externality through green policies. Lowered firms' benefits and lower households' income, and thus lowered fiscal bases within the jurisdiction, reduce its fiscal capacity (defined as the tax revenue raised applying standard effort).

Indeed, municipalities would be compensated for this loss through the environmental fiscal capacity component of an environmental equalisation system. And this is precisely the idea that justifies introducing the environmental component in SNGs' equalisation schemes.

In a very simplified form, the theoretical framework would be as follows. Assume two municipalities (M1, M2), identical in terms of capital and labour endowments (K1=K2; L1=L2), population (P1=P2) and per capita income/wealth (R=R1=R2). R represents, at the individual level, the result of short-term maximisation of private surpluses of firms and households. In the long run, due to negative environmental externalities, individual utility function maximising behaviours do not maximise social utility.

Under the assumption that the local tax base (B) is directly related to individual income or wealth, then the tax base of M1 is B1=P1·R1 and that of M2 is B2=P2·R2. Since both municipalities have identical characteristics, then B1=B2. If both jurisdictions design and implement a local tax system that requires the same tax effort (t=t1=t2) for taxpayers, the corresponding fiscal capacities would equate T1=t1·B1 and T2=t2·B2, and thus, T=T1=T2.

We assume that before public intervention, both municipalities have the same environmental problems. However, they implement measures that differ on size, design or implementation effectivity. Therefore, each jurisdiction's intervention will lead to different opportunity costs, C1 and C2. Considering that M1's intervention corrects negative environmental externalities to a larger extent than M2's, then C1>C2.

Consequently, economic capacities become R-C1 and R-C2, and their tax bases, $B1'=P1\cdot(R-C1)$ and $B2'=P2\cdot(R-C2)$, with B1'<B2', and hence T1'<T2'. Due to the higher opportunity cost generated by M1's environmental protection policy, an argument to compensate M1 through an adjustment in the fiscal capacity component of the fiscal equalisation formula emerges. The compensation amount (S) should be determined to restore the the equality B1'=B2', and subsequently the identity T1'=T2', such that $S=P\cdot(C2-C1)\cdot t$. Otherwise, jurisdictions' incentives to implement ambitious and thus costly environmental policies will be reduced.

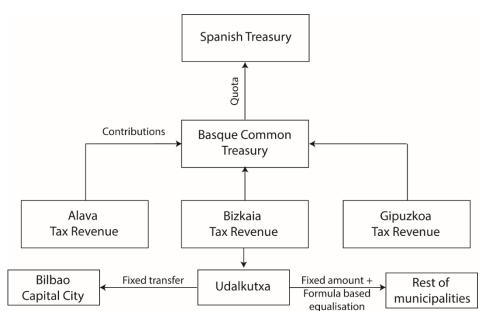
4.2. Expenditure needs equalisation and climate adaptation policies

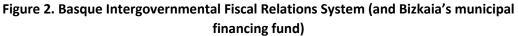
When climate policies are discussed, in addition to mitigation policies that aim to prevent the increase in temperatures, adaptation policies can also be considered. Adaptation policies try to help cities and infrastructures to remain resilient and liveable once temperature increases. While mitigation-oriented environmental policies, such as restrictions on the use of cars or land uses, generate an opportunity cost in terms of revenue losses, as discussed in the previous section, adaptation policies are linked to an increase in expenditure needs. Variables used by most EFT schemes, or the French and Portuguese green fiscal equalisation components, are related to mitigation and prevention, but have little to do with adaptation. However, there are strong arguments supporting consideration of environmental variables related to the expenditure needs component of fiscal equalisation formulas too.

In fact, protecting neighbourhoods from the rise in the level of the sea or rivers or creating cities liveable during longer and hotter summers, require large investments in the present. Although large climate adaptation infrastructure policies are usually carried out and funded by regional or central governments due to their magnitude, when these infrastructures are circumscribed to cities, it is local public budgets that have to support these projects. For instance, if a capital city would decide to reform its streets and urban design in order to alleviate the "Urban heat island effect" it would have to assume its costs. This is why an expenditure need component to support municipalities that have a greater need for climate adaptation could complement the fiscal capacity component previously introduced so both sides of fiscal equalisation would consider environmentally related variables when allocating transfers across municipalities.

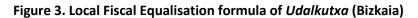
As is the case when unemployment, poverty and inequality rates (i.e., variables which can be manipulated by governments) are used to compensate SNGs' increased expenditure needs in social assistance through fiscal equalisation, moral hazard problems could arise when municipalities are compensated for their vulnerability to extreme climate events or their higher need of adaptation to face the consequences of climate change. Periodic evaluation of progress in adaptation policies could be used to build indicators for related expenditure need equalisation that help address potential moral hazard issues. Yet, the cost of climate inaction is forecasted to

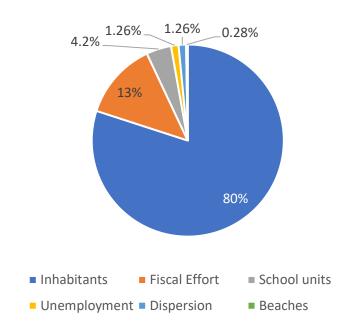
be so high (EEA, 2007; Stern, 2007) that receiving more transfers would never compensate damages produced due to insufficient adaptation. Furthermore, even if the impact of local environmental policies is of critical importance, isolated local climate action will not obviate the need for adaptation. Therefore, it seems fair to support more vulnerable municipalities.


In the following sections, inspired by international experiences and the discussion developed in the previous sections, we present our proposal to introduce an environmental component into the local equalisation scheme. We discuss the methodology used to build the Local Sustainability Index, a composite index that incorporates both the opportunity cost in terms of fiscal capacity (LSI) and the increase in expenditure needs (LSI+). First, we justify the use of the variables selected to construct the synthetic LSI. Second, we carry out the regressions (OLS-approach) and Principal Component Analysis (PCA) needed to calculate the value of the index for each municipality. Then, to illustrate the proposal, and due to the lack of data for the rest of Spanish municipalities, we apply the index to the current Basque local equalisation system and provide figures on how fiscal transfers received by Basque municipalities would have changed for the 2016-2019 period under our proposal. In the following section we describe in some detail the local funding systems in the Basque Country.


5. Basque Local Funding Systems

The public finances of institutions of this region of Spain are governed under a special funding regime called the "Economic Agreement". The agreement provides the Basque provinces (Alava, Bizkaia and Gipuzkoa) with a very high degree of tax autonomy, and with freedom to design their own formulas to support municipalities within each of the three jurisdictions. The Economic Agreement defines two types of intergovernmental fiscal relations, illustrated in Figure 2: external and internal. External relations refer to those between Basque institutions and Spanish institutions, such as the "Quota". Tax revenue collected by the three provincial treasuries is first used to fund the Quota paid by the Basque Regional Government. Internal relations refer to revenue allocation between Basque institutions. Around 70% of funds accrue to the budget of the Basque Regional Government, responsible for the main spending programmes, such as healthcare or education, 18% is retained by provincial governments, and the last 12% is distributed by each province across municipalities within its jurisdiction.


The Economic Agreement recognise Basque provinces' autonomy to organise their own local funding scheme, in contrast to the homogeneous regime in force for the rest of Spanish municipalities. Therefore, the local equalisation formula in the three provinces differ, although the economic relevance of transfers for local budgets is similar, ranging between the 43% and 53% of local revenue in 2018 (OCTE, 2020). Also, the structure of the three schemes follows a similar rationale. First, the global amount of transfers for local entities is determined according to the revenue expected to be raised by the provincial tax administration. Second, this funding cap is allocated across the capital city, which receives a fixed amount, and the rest of municipalities. This second component is distributed according to the local equalisation formula. Although the three Basque provinces apply a very similar formula, the variables used and weights attributed to them differ. As observed in Figure 3 for the municipal financing fund (*Udalkutxa*) of the province of Bizkaia, grants are mostly based on indicators of expenditure needs, such as population, the number of school units, unemployment, population dispersion or the existence of beaches. The revenue component is incorporated through the fiscal effort,


which represents 13% of the funds transferred. Fiscal effort is defined as the gap between potential and actual revenue in five local taxes, and its inclusion in the formula is meant to introduce incentives against local tax competition. This component represents 5% of transfer allocation in Alava and 3.5% in Gipuzkoa. However, in the latter case an additional 3% is determined according to the inverse of local income as a proxy of fiscal capacity. Transfers received are not earmarked, meaning that municipalities can use them to fund any programme within their jurisdictional competence.

Source: own elaboration.

Source: own elaboration based on OCTE (2020).

6. The Local Sustainability Index

In this section, we further elaborate the proposal for incorporating a green component to local fiscal equalisation scheme by making use of the current local equalisation systems of the Basque Country, described above. Although we would have preferred to use data from all Spanish municipalities, including those who receive their funding through the so-called "common regime" (7,880), data limitations led us to restrict our sample to the 251 Basque municipalities (51 in Araba, 112 in Bizkaia, and 88 in Gipuzkoa).

We will build two indices, one related to changes in fiscal capacity associated to climate mitigation policies (named after "Local Sustainability Index"; hereinafter LSI), and the other additionally related to changes in expenditure needs motivated by climate adaptation policies (LSI+). Composite indicators concentrate complex information and data in just one number, and thus are useful because they allow us to make comparisons based on more than one variable, across different institutional frameworks and time periods. In addition, together with scoreboards and rankings, composite indices are increasingly being used for policy evaluation and communication in all kinds of policy areas, from innovation to sustainability, as they should be easy to interpret (OECD and EC JRC, 2008). Oppositely, usual criticisms focus on the high degree of discretion in their design and argue that aggregation can sometimes lead to important information losses.

6.1 Data and variable selection

We first explain how we have constructed the local environmental performance index LSI, which we will use to re-allocate 5% of the equalisation transfers received by municipalities. The first step in the construction of the LSI is the selection of the variables that will compose it. Our database is based on <u>Udalmap</u>, a data platform developed by the Basque Government that includes local-level data for hundreds of variables, of which 50 are related to the environment. We discard those without availability or variability for the selected period, or without apparent relation with local tax capacity and with green outcomes of local policies. As a result, we have restricted the sample to 18 variables divided into seven different environmental areas whose correlation with fiscal capacity will then be tested. Also, although the availability of some of them ranges from 2005 to 2021, in order to get a comprehensive index, we needed to work with a fully balanced panel, which was only possible for the years 2016-2019. Still, we consider that this period allows us to achieve representative results, since these years cannot be considered outliers in terms of economic or fiscal performance.

Table 2 lists the 18 variables used across the seven environmental domains (water, air quality, energy, transport and mobility, touristic pressure, soil use and waste), provides information about their measurement units and the expected sign or their correlation with environmental desirability, and justifies their link with fiscal capacity. Municipalities have the capacity to influence all these variables through policies that lie within their responsibility, including regulation, provision and taxation. For instance, urban waste generation is related to higher economic activity, and in particular tourism, and thus to higher tax capacity, and can be influenced by local policies, such as "Pay as Your Throw" tax schemes (Gatto and Montes, 2021).

Table 2. Selected variables for the Local Sustainability Index

Name	Measurement Units*	Environmental correlation sign	Justification
Water			
Water demand	litres/inhabitant/day	-	Industry and agriculture are water intense and pose a risk for its quality. Both generate an
Health quality of consumption water	0-3 Index	+	economic and tax revenue impact. Water management and fees are local.
			Higher economic activity -> Higher local tax capacity, but at the cost of -> Higher water demand and risk of water pollution
Air Quality			
PM10µg/m ³ excess and number of heavy pollution episodes (OMS 2021 thresholds)	Normalised (50% of weight for each indicator)	-	Mobility, housing, and industry are the main air polluter sectors. These activities broaden the local tax base.
NO2µg/m ³ excess and number of heavy pollution episodes (OMS 2021 thresholds)	Normalised (50% of weight for each indicator)	-	Municipalities are responsible for urban mobility (e.g. congestion charges, LEZ), and share responsibilities on urban planning and housing.
O3µg/m ³ excess and number of heavy pollution episodes (OMS 2021 thresholds)	Normalised (50% of weight for each indicator)	-	Higher economic activity, ownership and use of private vehicles, and use of heating -> Higher local tax capacity, but at the cost of -> Worse air quality
Energy			
Installed photovoltaic power capacity	kW per 10.000 inhabitants	+	Renewable power installations compete with economic activity for the use of land,
Installed wind power capacity	kW per 10.000 inhabitants	+	therefore at the cost of local tax revenue. Energy consumption not only generates local tax revenue but is also a proxy of higher economic activity and income.
Annual non-industrial electricity consumption	kW per inhabitant	-	Energy efficiency certificates are only required for selling and renting real estate, therefore are also correlated with higher local tax capacity.
Housing with energy efficiency certificates	‰ housing units	+	Municipalities share responsibility for land use, energy efficiency implementation and certification on buildings.
			Higher economic activity and income, and a more dynamic real estate market -> Higher local tax capacity, but at the cost of -> Less available land for renewable energy installations (and more real estate with energy efficiency certificates)

* Variables are normalised to have zero mean and one unit of standard deviation, to allow data aggregation afterwards.

**Although this variable has not a direct environmental meaning, it has been included to adjust worse performance in the transport and mobility indicator of rural and more remote municipalities for an increased need of car ownership, allowing comparability and following fair ecological transition political economy rationale (Boroumand et al., 2022).

Source: own elaboration, based on Udalmap.

Table 2. Selected variables for the Local Sustainability Index (continuation)

Name	Measurement Units*	Environmental correlation sign	Justification
Transport and mobility			
Vehicles	Vehicles per inhabitant	-	Vehicles and transport sector generate an economic impact and increase local fiscal
Land dedicated to transport and communication infrastructure (excluding roads)	0-100	-	capacity. Municipalities are responsible for the urban design and the definition of uses of land and public space.
Detour to reach the capital of the province* *	0-100	+	More economic activity and income -> Higher local tax capacity, but at the cost of -> Increased vehicles ownership and use and higher share of land devoted to transport and communication infrastructures.
Touristic pressure			
Touristic accommodations	‰ inhabitants	-	Tourism generates an economic and tax revenue impact Higher touristic activity -> Higher local capacity
Soil use			
Surface covered by forest	0-100	+	Use of soil determines activities that can be carried out, generating (or restricting)
Artificial surface	0-100	-	economic and tax revenue impact. Municipalities are responsible of defining soil uses.
Non-developable surface	0-100	+	Higher economic activity -> Higher local tax capacity, but at the cost of -> Less soil devoted to natural landscape.
Waste			
Urban waste generation	kg/inhabitant/year	-	Large-scale retail and tourism-related activities generate economic and tax revenue
Urban waste collection separation rate	0-1	+	impact, but also affect waste generation. Waste management is a local responsibility (e.g. municipalities can raise revenue through fees or PAYT schemes) Higher economic activity (retail, tourism) -> Higher local tax capacity, but at the cost of Higher volumes of mixed waste

* Variables are normalised to have zero mean and one unit of standard deviation, to allow data aggregation afterwards.

**Although this variable has not a direct environmental meaning, it has been included to adjust worse performance in the transport and mobility indicator of rural and more remote municipalities for an increased need of car ownership, allowing comparability and following fair ecological transition political economy rationale (Boroumand et al., 2022).

Source: own elaboration, based on Udalmap.

6.2 Composite Index methodology

Next, we use two alternative methodological approaches, Ordinary Least Squares and Principal Component Analysis (PCA), to select the variables significantly related to local tax revenue and then aggregate them to obtain the LSI.

a) OLS approach

We first regress local tax revenue per capita on the eighteen variables reported in Table 1. As Table 3 shows, all variables involved in each of the seven sub-indexes are significantly related to tax revenue, except for the PM10 Index and the number of touristic accommodation spots. Also, the sign of the relationships is the expected one, with the only exception of non-developable surface, and renewable energy source installations, as we would have expected to find a negative sign. The positive relationship we find could respond to increased agricultural activity in the former case, and to compensations payments for renewable power installation in the later.

Interpreting the sign of coefficients reported in Table 3 is relevant regarding the justification of the selection of variables used to design the LSI. Indeed, selected variables are supposed to be positively or negatively correlated with fiscal capacity of local governments. However, these signs are not used to calculate the value of LSI sub-components. Since the rationale behind the LSI is to honour good and penalise negative environmental performance, variables are included in the formula according to the environmental correlation sign presented in Table 2 instead. Therefore, coefficients reported in Table 3 are only used to determine the weight each variable has within the corresponding LSI sub-component. For example, the share of artificial surface is positively correlated with fiscal capacity (Table 3). However, the existence of larger shares of artificial surface is an undesired outcome in environmental terms (Table 2). Consequently, this variable will enter the formula to compute the Soil LSI sub-component with negative sign.

We then use the estimated coefficients reported in Table 3 -rescaled to add up to 1 for each category- as the weights to calculate the seven sub-indexes to measure the environmental performance of each municipality in each domain. At this point, the signs of the variables have been modified to reward environmentally desirable outcomes and punish undesired ones, as defined in Table 2. As a result, the larger the sub-index is, the better the environmental performance. As an example of how to interpret these outcomes, forest surface is significantly and negatively correlated with local tax revenue per capita. It determines 26,6% of the value of the soil sub-index. Therefore, an environmentally friendly policy such as increasing forest surface has a potentially negative impact on fiscal capacity of a municipality. As a municipality with larger forest surface will have a larger LSI, through the soil sub-index, then that municipality would be compensated through a larger transfer allocation.

Local Tax Revenue per capita	(1) Water	(2) Air	(3) Energy	(4) Transport	(5) Tourism	(6) Soil	(7) Waste	(8) All	(9) Sub-Indexes Weights
iPM10		0.0306						0.0269	0.0773113
		(0.0524)						(0.0354)	
iNO2		0.122*						-0.118**	0.3078061
		(0.0648)						(0.0541)	
iO3		0.243***						0.0199	0.6148826
		(0.0566)						(0.0451)	
Water demand	0.196***							-0.172***	0.8128221
	(0.0188)							(0.0279)	
Water quality	0.0452**							0.0546**	0.1871779
	(0.0188)							(0.0232)	
Photovoltaic	(/		0.0267**					-0.0100	.0365105
			(0.0136)					(0.0253)	
Wind power			0.132***					0.171***	0.1805779
			(0.0136)					(0.0235)	012000770
Electric consumption			0.528***					0.524***	0.7216687
			(0.0137)					(0.0298)	0.7210007
Efficiency certificate			0.0448***					0.0582*	0.0612429
Enterency certificate			(0.0135)					(0.0324)	0.0012425
Vehicles			(0.0135)	0.315***				0.162***	0.3434649
Venicies				(0.0146)				(0.0335)	0.3434049
Infrastructure				0.384***				0.151***	0.4183523
lillastiucture				(0.0147)				(0.0272)	0.4165525
Determine the constal situ				-0.219***				-0.136***	0.2381828
Detour to the capital city									0.2381828
To contration of a state				(0.0147)	0.00204			(0.0255)	
Touristic posts					0.00384			-0.0244	-
					(0.0163)			(0.0237)	

Table 3. OLS Regression results that test the correlation between variables and Local Tax Revenue per capita

Source: own elaboration.

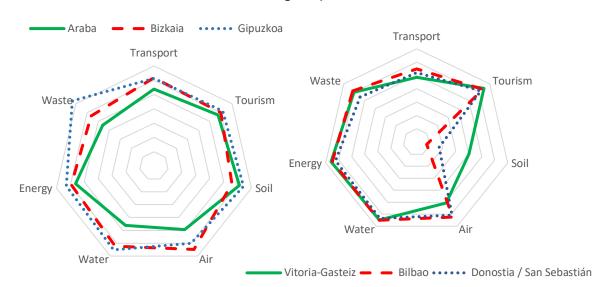

Local Tax Revenue	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
per capita	Water		Energy	Transport	Tourism	Soil	Waste	All	Sub-Indexes Weights
						(0.0226)		(0.0318)	
Artificial surface						0.358***		0.431***	0.3501549
						(0.0611)		(0.112)	
Non-developable surface						0.393***		0.420***	0.38359
						(0.0609)		(0.111)	
Waste generation							0.328***	0.146***	0.7219639
							(0.0222)	(0.0290)	
Separate collection							0.126***	0.0718**	0.2780361
							(0.0222)	(0.0314)	
Constant	0.00168	-0	0.00123	-0	0	0	-0.0533**	0.00333	
	(0.0187)	(0.0360)	(0.0135)	(0.0145)	(0.0163)	(0.0191)	(0.0208)	(0.0230)	
Observations	2,750	753	3,755	3,514	3,765	2,510	2,144	736	
R-squared	0.039	0.027	0.315	0.259	0.000	0.081	0.093	0.623	

Table 3. OLS Regression results that test the correlation between variables and Local Tax Revenue per capita (continuation)

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Source: own elaboration.

As shown in Figure 4 and in Table A1 (Annex I), and even if there are many differences within provinces, overall, municipalities in Araba show the worst sustainable performance on average, whereas municipalities in Gipuzkoa stand out as the best. In fact, the latter scores the best in every area but air quality, which is leaded by Bizkaia. The most significant differences are observed in the area of urban waste management, where Gipuzkoa surpasses the other two jurisdictions by a wide margin. This is not surprising since the province is usually presented as an example of good practices in this policy area (Gatto and Montes, 2021; Gainza and Montes, 2023). If we look into the figures for the three capital cities, they record really similar numbers, with Donostia lagging slightly behind. It is soil use the area in which Vitoria-Gasteiz stands out when compared to Donostia and Bilbao, due to the larger extension of the former, which allows for higher shares of natural surface within local borders.

Figure 4. Average subindex values for the three Basque provinces and capitals (2016-2019, unweighted)

Source: own elaboration.

Finally, these sub-indexes are aggregated to construct the LSI by following the same method. First, the seven sub-indexes have been used as regressors to try to explain local tax revenue per capita. Then, the estimated coefficients have been rescaled to sum up 1 so they can be used as weights to aggregate the seven environmental sub-indices into one composite LSI. Touristic pressure area has been excluded due to the lack of significance of the sub-index on tax revenue per capita, which suggests this area would not be relevant. LSI follows a normal distribution and adopts values ranging between -2.89 and 0.58.

Once again, estimates in Table 4 show that higher environmental performance is related to a lower local tax revenue per capita, with the only exception of water. Again, the signs are relevant only regarding the motivation of the use of the subindexes, as only estimated coefficient magnitude are used to compose the LSI. These estimates support the rationale for compensating for the erosion of tax bases arising from environmental protection through green fiscal equalisation. Consistently, while energy and transportation would have the highest weights in the final index, water and soil use would be the ones with the lowest.

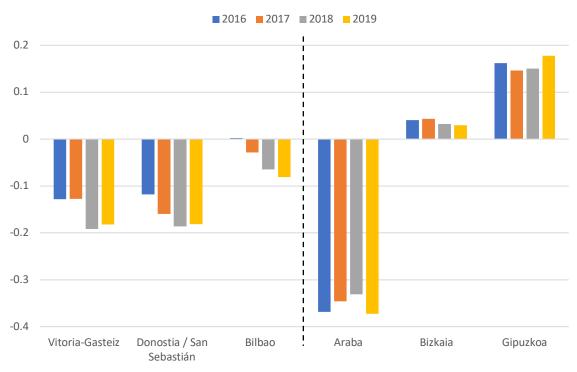

Local Tax Revenue per capita	OLS	Weights
Water	0.142***	0.0779625
	(0.0305)	
Air Quality	-0.271***	0.1488469
	(0.0610)	
Energy	-0.615***	0.3378964
	(0.0369)	
Transport and mobility	-0.556***	0.3052592
	(0.0473)	
Touristic pressure	0.0310	
·	(0.0229)	
Soil use	-0.0637**	0.0349719
	(0.0259)	
Waste	-0.173***	0.0950632
	(0.0299)	
Constant	0	
	(0.0225)	
Observations	1,004	
R-squared	0.492	
· · · ·	tandard errors in parentheses	

Table 4. OLS Results for Sub-Index aggregation

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Source: own elaboration.

Once the six sub-indexes are gathered, results are consistent with those commented in Figure 4, as Figure 5 illustrates. Indeed, while municipalities in Araba perform worse than their peers in Bizkaia and Gipuzkoa, it is Bilbao the city that stands out over Vitoria-Gasteiz and Donostia. There are no clear patterns over time. Cities tended to worsen their performance between 2016 and 2019, but this was not the case for the unweighted average for the provinces. However, cross-province comparisons are not as relevant as within-province differences, since municipal funds are allocated according to three different provincial funds.

Figure 5. Local Sustainability Index for three provinces and capitals

Source: own elaboration.

b) Principal Component Analysis

As an alternative methodological approach, we use Principal Component Analysis (PCA) to build the LSI. PCA is one of the most broadly used techniques to design composite indicators, as it is viewed as a less discretionary methodology when compared to alternative approaches (OECD and EC JRC, 2008). The objective of this methodology is to keep the largest variance of the data as possible in the fewest linear combinations of the original variables as possible. In our case, we use the same 18 variables enumerated in Table 2, after which PCA outcomes suggested some most correlated variables should be dropped in order to attain a more efficient and simpler index, while retaining most of its explicative power/variability. With this aim, we retained 13 out of the 18 variables and the first six principal components. We lowered the usual threshold for eigenvalue equal or higher to one to 0.94 to reach an explicative power of 79%. Together with both, Kaiser-Meyer-Olkin (KMO) measure of 0.7 and a p-value equal to zero in the Bartlett's test of sphericity, they suggest that our specification is correct.

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1	3.68924	1.33301	0.2838	0.2838
Comp2	2.35623	1.14834	0.1812	0.4650
Comp3	1.20788	.132733	0.0929	0.5579
Comp4	1.07515	.0644805	0.0827	0.6407
Comp5	1.01067	.0741336	0.0777	0.7184
Comp6	.936537	.191177	0.0720	0.7904

Table	5	Drinci	nal C	omn	onents
lane	э.	FILICI	Jai C	omp	onents

Source: own elaboration.

Under this specification, PCA extracted six principal components. Next, Table 6 shows the loadings¹ of each variable within each of the six components extracted, grouped according to their sign. As it can be observed, PCA suggests dropping certain variables (PM10, photovoltaic energy installed power and touristic pressure) because their correlation with the rest of the variables was so high that it resulted in a great loss of explanatory power. Variables with the greatest explanatory power are those more often used in EFTs and related to soil use, such as artificial surface, and non-developable surface, followed by NO2 air pollution index. Within variables with negative factors, those with the highest explanatory power are O3 air pollution index, car ownership and water demand. In this case, LSI follows a normal distribution and adopts values that range between -3.65 and 2.83.

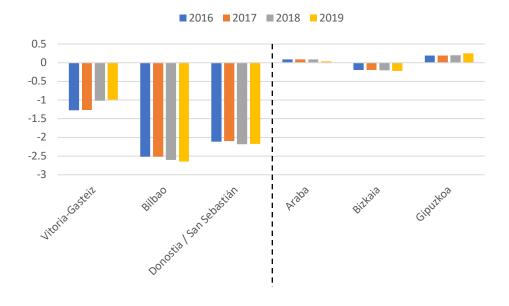

Variable	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6
Artificial surface	.4648	.2024	.09075	009403	.00094	06881
Non- developable surface	.4639	.2046	.1058	.008776	.006139	07935
NO2µg/m³	.4586	04973	.07579	264	.02861	.009112
Surface covered by forest	.2147	.4244	.1523	.2723	.01102	01271
Urban waste collection separation rate	.09578	.245	5592	.3616	1163	.0308
Installed wind power capacity	.08991	1261	06678	.1845	.5767	.7615
O3µg/m³	4013	.1648	.2144	.3166	000187	06824
Vehicles	3013	.2462	.01365	4741	01626	.1226
Water demand	1727	.4187	04127	01107	.06296	.1343
Non- developable surface	08156	.4524	1234	.1913	02338	004158
Health quality of consumption water	05797	.03788	1702	0473	.7867	5836
Detour to reach the capital of the province	04914	.09569	.7365	.1959	.1401	.004569
Annual non- industrial electric consumption	03066	.4247	00441	5374	.09786	.1716

Table 6.	Principal	Component Loadings
----------	-----------	---------------------------

Source: own elaboration.

¹ PCA loadings illustrate the importance of independent variables. As coefficients in regressions, they represent the size of the contribution of independent variables to the components.

In this case, as Figure 6 shows, Bizkaia and Bilbao are the worst performers, with Gipuzkoa still as the best ranked province and Vitoria-Gasteiz as the best capital this time. Results for each municipality can be observed in Table B1 (Annex II). Finally, it should be mentioned that differences in results between Indices built using the two methodologies are reasonable. In fact, not all variables used in econometrically-based Index have been retained in the PCA-based Index and while the rationale for signs and weight of the former came from correlations towards per capita local tax revenue and theory, variability maximisation was the criteria applied in the latter case. Therefore, even though the PCA approach could be tecnically superior regarding some mathematical properties, we consider that the OLS approach might be more useful for policymakers due to operational management improvements, such as increased transparency, and understandability for local stackeholders of the formula used.

Source: own elaboration.

6.3 Using LSI for greening local equalisation

Once the LSI has been constructed, we will use it to re-allocate 5% of the equalisation transfers received by municipalities, as in the Portuguese model. So, in a first approach, 5% of the municipal equalisation fund of each province (0,05*U) is redistributed according to the unitary value of the index (V) in this province. Unitary value is the amount of funds paid by each unit of population-weighted LSI ($\frac{p_i}{n} * LSI_i$):

$$V = \frac{0.05 * U}{\sum_{i=1}^{n} \frac{p_i}{p} * LSI_i}$$
(1)

The participation of each municipality in the share of funds allocated according to the LSI (U_i) is then calculated as the product of its unitary value, times the value of LSI for this municipality multiplied for its relative population:

$$U_i = V * LSI_i * \frac{p_i}{p} \tag{2}$$

Or, equivalently:

$$U_{i} = \frac{p_{i} * LSI_{i}}{\sum_{i=1}^{n} p_{i} * LSI_{i}} * 0,05 * U$$
(3)

In order to interpret the results of the new system, it should be kept in mind that each municipality would stop receiving 5% of its current participation in the *Udalkutxa* of its province that, as explained in Section 5, mostly depends on population:

$$Loss_i \approx \frac{p_i}{p} * 0.05 * U \tag{4}$$

In exchange, that share would be allocated according to each municipality's performance on the LSI relative to the rest. In summary, the municipalities that would gain from the change would be those whose per capita environmental performance is better than the average:

$$\frac{p_i * LSI_i}{\sum_{i=1}^n p_i * LSI_i} > \frac{p_i}{p}$$
(5)

So that,

$$LSI_i > \frac{\sum_{i=1}^n p_i * LSI_i}{p} \tag{6}$$

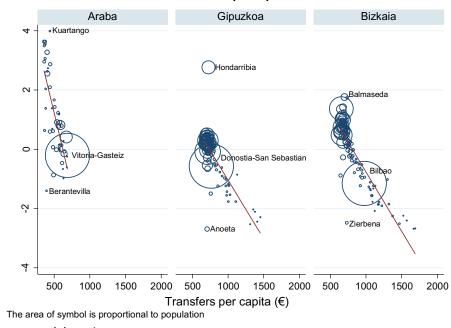
However, the main goal of our proposal lies on setting incentives for local governments to improve their efforts to promote sustainability. Yet this way municipalities in a good starting position would be better-off and receive extra transfers with neither any effort nor improvement. To solve this, we consider a second approach that will allocate 2.5% of the fund based on the baseline index and the other 2.5% according to the year-by-year variation² of the index in order to reward not only relative environmental performance, but also relative improvement. It should be kept in mind that since the transfer allocation formula works as a zero-sum game, transfers are allocated according to scores that are relative to the performance and evolution on the performance of the rest of municipalities within each province.

As local funding models for each of the three provinces differ in terms of the variables used and their associated weights, we will follow an approach that allows for equal treatment to every municipality (horizontal equity). Thus, two municipalities of the same size with the same score in the LSI would participate in the same share in the municipal transfer fund of its province. Thus, heterogeneities in per capita funding levels in this case would come from the amount of local funds provided by each provincial government. Therefore, although up to this point all municipalities have been equally treated in the computations regardless of the province they belong to, this will be relevant in the following steps.

Finally, the implementation of the expenditure needs component caused by climate adaptation is proposed. To do so, we use the Local Climate Change Vulnerability and Risk Index created by the Basque Public Agency for Environmental Management (Ihobe, 2019). It actually comprises four indices that measure the risk of each municipality to suffer effects of heatwaves on human

² Year-by-year variation of the LSI is calculated and normalised. Then the formula described above for the baseline case is again applied. First, the unitary value is computed to calculate the participation based on year-by-year change on LSI.

health, of draughts on agriculture, and to suffer effects of floods caused by an increase in sea or river levels. In particular, we have made use of the risk indices on the worst-case scenario (RCP 8.5) for the 2071-2100 period. In order to synthesise all four variables in just one composite index, we have calculated the average out of the maximum values for heat and water-level related indicators. This way, we are able to concentrate all the adaptation-need information in just one variable ranging from 0 to 2, with higher values indicating a greater need for adaptation. Again, the formula applied to link environmental variables with local funding replicates the one described above. Yet, in this case 2.5% of the local fund would be allocated according to climate mitigation related fiscal capacity equalisation (1.25% according to the base value of LSI and 1.25% according to the year-on-year change of LSI), and another 2.5% according to climate adaptation related expenditure need component described in this paragraph, the combination of both resulting in the LSI+. It should be noted that in the latter case, although desirable to avoid moral hazard issues, evolution cannot be considered due to lack of data availability.


7. Results

We will start by providing the results of the LSI application in the two scenarios explained in the previous section. The first scenario will redistribute 5% of the municipal equalisation fund of each province according to the base value of the index. In contrast, the second scenario will allocate 2.5% of the fund based on the same variable and the other 2.5% according to the year-by-year variation of the index in order to reward not only relative environmental performance, but also relative improvements in it. This section only includes detailed results for the latter scenario, which is the preferred one. Detailed figures of per capita transfers for each municipality under each of the scenarios considered are reported in Table C1 (Annex III).

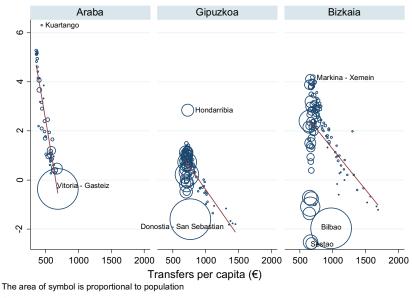
Figure 7 shows the distributive results the green fiscal equalisation reform based on the LSI would have on local transfers, under the OLS approach, when considering the year-by-year variation. As it can be observed, current local funding systems provide a relatively uniform funding across municipalities. Looking to the data in Table C1 (Annex III)³, we could state that Araba's system is the one that provides overall less funding per capita ($480 \in$ on average), but also the most evenly distributed (with a standard deviation value of $100 \in$), despite being the one that benefits its capital the most ($645 \in$), when compared to Gipuzkoa's ($706 \in$ for the capital vs. 750 \in provincial average) and Bizkaia's ($913 \in$ for the capital) systems. While Bizkaia's system is the most generous ($803 \in$), it is also the least evenly distributed among municipalities, since it records the largest standard deviation in per capita funding (with a value of $235 \in$).

³ Data also represented in maps at Annex IV: Figures D5, D6, and D7.

Source: own elaboration.

Environmental fiscal equalisation reform would improve the equity of Basque local funding systems, as currently neglected fiscal capacity and expenditure needs would then be considered within the equalisation formula. To the extent that equalisation is aimed at facilitating the provision of similar levels of services at equal tax effort, a reform of the instrument that improves the construction of tax capacity and expenditure needs would enhance the equity of the funding system.

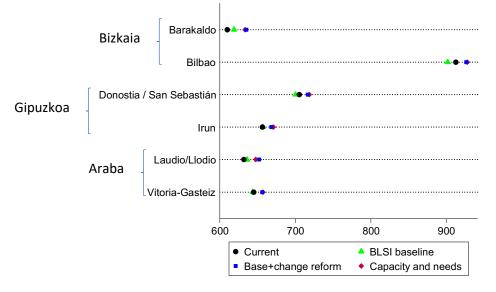
Furthermore, environmental performance of small municipalities measured by the LSI is systematically better than for large cities, and this is also reflected in the change in per capita transfers the green reform would have. Distribution of gains and losses depending on municipality size would differ in each province. While small municipalities in Araba would be, overall, better-off after a reform, the opposite would be true in Bizkaia and Gipuzkoa, where it is medium-sized municipalities the ones that would register the largest wins. This can be explained because it is smallest municipalities those that receive the largest per capita allocations under the current local funding system, since it includes a fix amount paid equally to every municipality to support fixed costs (in 2019: 21,035.42 in Araba; 84,141.69 for smallest municipalities in Gipuzkoa; 81,137 in Bizkaia). Also, the outcome in Araba differs because there is a lack of intermediate cities, with a large population difference between the capital city and the rest of municipalities.


Results are very similar when compared with the baseline reform scenario (Figure D1, Annex IV), that neglects the year-by-year change in LSI. However, the scenario illustrated by Figure 7 shows more even results for Araba and Bizkaia as winners and losers do not record as extreme values, while the opposite is true for Gipuzkoa. Indeed, under the baseline scenario (Figure D1, Annex IV), the transfer loss recorded by worst-off municipalities in Araba and Bizkaia would almost double. This can be explained because these municipalities, Berantevilla (-3.5% in baseline vs. - 1.4% in base+change) and Zierbena (-4% in baseline vs. -2.7% in base+change), are bad environmental performers, but show a good positive trend. In contrast, Kuartango (4.3% in baseline vs. 4% in base+change), in Araba, is not only a good performer, but records a positive

trend. Finally, in Gipuzkoa, Hondarribia (-0.3% in baseline vs. 2.8% in base + change) does not stand out for the highest value of LSI, however it does show a very good year-to-year improvement. This case represents a good example of the rationale for considering year-by-year variation within the formula.

In contrast, if the environmental fiscal equalisation reform would apply the LSI designed through PCA instead (Figure 8), wins and losses would be less evenly distributed, with slightly higher maximum and minimum values. In this case, larger losses would be faced by large municipalities, and particularly by capitals (In 2019: Vitoria Gasteiz -0.37%; Donostia/San Sebastián -1.6%; Bilbao -2%). This is particularly the case in Araba, where transfer losses of Vitoria – Gasteiz would fund almost all gains of the rest of municipalities in this province. These changes in the funding distribution among municipalities brought about by the green fiscal equalisation reform makes sense if we consider that it is usually larger cities that incur in more severe environmental problems, such as worse air quality or lower shares of natural surface, to cite just few examples.

Comparing reported PCA-based methodology that considers year-by-year changes in LSI (Figure 8) with baseline (Figure D2, Annex IV), we observe, again, that results are quite similar. As seen for results of the OLS-approach, in Araba and Bizkaia wins and losses for municipalities in the extremes of the distribution tails are larger under the baseline scenario. With highest wins for Kuartango (11.3% in 2019) in Araba, and Markina-Xemein (4.2% in 2019) in Bizkaia, being the highest losses recorded in Sestao and Portugalete (-2.5% in 2019).


Source: own elaboration.

Finally, when considering both the LSI index and expenditure needs for climate adaptation, both OLS and PCA-based approaches reach similar outcomes (Figure D3 and Figure D4, Annex IV). Navaridas (-1.9% OLS and -1.7% PCA), Orexa (-3% and -2.7%) and Nabarniz (-3.3% and -2.6%) are the most negatively impacted municipalities in each province as they record a non-existent risk of suffering floodings neither due to the rise of the sea level nor due to a river overflow, and thus low adaptation needs. Oppositely, Barrundia, Valdegovía-Gaubea (3.7% OLS and 4.5% PCA) in Araba; and Valle de Trápaga-Trapagaran (1.3% and 2%) in Bizkaia would be compensated for

the high risk of suffering both floodings and droughts; being the risk in Hondarribia (1.5% and 1.5%) (Gipuzkoa) limited to very serious flood risk as a coastal municipality (with 2019 data).

Figure 9 and 10 show the results for the two most populated cities in each province for the current system and the three reform scenarios suggested for each of the two Index-building methodologies: allocating the 5% of equalisation transfers received by municipalities according to the base value of the LSI; allocating the 2.5% of the transfers according to the base value and the other 2.5% according to the year by year variation of the LSI; and allocating 2.5% of the local fund according to the LSI (1.25% according to the base value and 1.25% according to the year-on-year change), and another 2.5% according to climate adaptation related expenditure need component.

Both figures show that, overall, large cities would be better-off in case increased expenditure needs for climate adaptation would be considered within the fiscal equalisation formula, when compared to current situation. Yet, the formula that considers both base values of environmental variables and their evolution in time, is the one that benefits the largest cities the most, as even if they record negative results in LSI, they show overall a positive trend within the 2016-2019 period. It is also true, that large municipalities have policy tools and resources (legal, financial and human) that allow them to implement more ambitious environmental policies than smaller municipalities. Therefore, the incentives established by this reform could have a more profound impact on them. Both methodologies show similar results, with PCA-based Index showing larger variability than the OLS-based approach.

Source: own elaboration.

The exception is Donostia/San Sebastian, whose public budgets would be worst-off in every reform scenario (but the baseline) when compared to the current system due to the relatively worse environmental performance it shows when compared to the rest of municipalities in Gipuzkoa. First, because this capital shows very negative records of soil use and second, because the rest of municipalities of the province outstand among the most sustainable towns in Spain in waste management. However, biggest losses would be faced by the largest city in the Basque

Country, Bilbao, under the LSI baseline scenario, this is the one considering only level values and not yearly changes in variables. In fact, in this reform scenario, and under the PCA approach, the loss would have reached up to the 2.8% of per capita transfers received in 2019. On the opposite side, Barakaldo, the fourth largest city in the Basque Country, would have increased its transfers up to a 3% in the same scenario also in 2019.

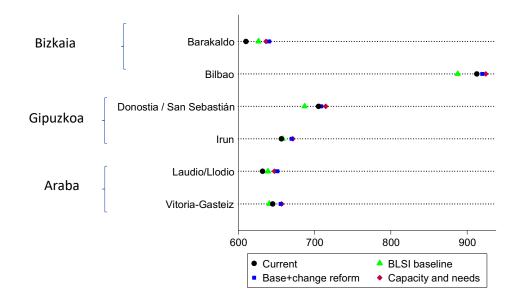


Figure 10. Transfer per capita (€) in PCA Index-Scenario (2016-2019)

Source: own elaboration.

In sum, we find that, overall, less sustainable cities could lose up to 5% of their per capita transfers, while small and most sustainable municipalities could win up to 13% of their per capita allocations. More rural towns, and those that could be considered as intermediate cities, would be among the top winners, whereas more industrial and car-intensive cities would be worse-off. In fact, in line with the argument suggested by Loft et al. (2014), these results evidence that environmental fiscal equalisation could serve to compensate rural areas for the ecological services they provide cities with. This is particularly relevant in the current context, first, due to the difficulties of ecological transition's political economy faces to gather support to pass and make politically feasible implementation of the measures necessary to reach environmental objectives set at the EU within the Green European Deal, and at the international level within the SGD agenda; and second, because of the abandonment feeling rural inhabitants are increasingly voicing through their support to local party platforms, and as explained by the literature of "places that don't matter" or "territories of despair" (Rodriguez-Pose, 2018).

At this point is relevant to recall that fiscal equalisation's aim is to allow all jurisdictions to provide its citizens with a standard level of services for an equivalent fiscal effort. Well, then environmental fiscal equalisation would not only set a strong incentive for local entities to cooperate to the international, national and regional green agendas, but would also contribute to close the rural-urban divide regarding the quality and access to basic public services (Alloza et al., 2021). Precisely, this catching-up process to equalise public service standards has also been recently set as objective by the British Levelling-Up agenda (HM Government, 2022).

8. Conclusions and policy recommendations

Academia, policymakers and public opinion are increasingly concerned by sustainability issues and their consequences for the environment, public health and the well-being of citizens. On the search for new tools to promote and attain UN's Sustainable Development Goals and internationally committed climate objectives, fiscal instruments occupy a central position, with examples that range from carbon taxes or subsidies for green investment, to massive public investment plans, such as the European Green Deal. In a context of increased decentralisation of public finances, engagement of all levels of government is crucial to achieve sustainability goals. Although, in general, regions and cities seem committed to it (Smoke and Cook, 2022), this is not always the case, as local political agendas may differ from central government's (Oates, 2005). This, combined with lack of subnational institutional capacity can compromise achievement of results.

Following the literature of Environmental Federalism and previous experiences of Ecological Fiscal Transfers (EFTs), we propose a new fiscal equalisation framework to set financial incentives to municipalities to foster more ambitious environmental policies. The main idea behind this tool would be to compensate municipalities for local tax revenue losses caused by environmental protection policies, that also serves as an incentive to adopt effective environmental policies. The main difference between EFTs and our proposal is that we do not defend an ad hoc low-scale arrangement, but a more ambitious one that gets incorporated within the comprehensive and large-scale general fiscal equalisation system instead. Therefore, these will be unconditional grants, rather than earmarked ones. Whereas, Mato Grosso (2009) and May et al. (2012) discuss a positive environmental effect of earmarking transfers to green expenditure, this colludes with the intrinsic unconditional nature of fiscal equalisation transfers. Thus, we combine ETFs approach with Snoddon and Tombe's (2019) proposal for Canadian carbon pricing revenue equalisation.

We contribute to the environmental federalism discussion by designing a new policy tool and simulating its results on the Basque local funding system. With this aim, we build a Local Sustainability Index measuring local performance in environmental protection and climate change mitigation in seven fields: water, air quality, energy, transport and mobility, touristic pressure, soil use and waste; and thus, the potential tax base loss. We do so for the period 2016-2019 for all Basque municipalities. We apply both an OLS approach and Principal Component Analysis to construct this composite index that would alter the 5% of currently paid transfers to Basque municipalities. Results range from up to 5% loses in per capita received transfers in less sustainable municipalities, to up to 13% wins in per capita allocations in most sustainable and small municipalities. We complement this LSI baseline component with a climate adaptation expenditure need component based on the Basque Local Climate Change Vulnerability and Risk Index, to complete a comprehensive tool (LSI+) that covers both mitigation and adaptation policy areas and fiscal capacity and needs components of fiscal equalisation.

Creating a link between local sustainability results and the volume of transfers municipalities receive would improve incentives towards sustainability and environmental goals achievement. Furthermore, we found that the distribution of budgetary resources among municipalities resulting from this new fiscal equalisation scheme with an environmental component can improve, reducing the relative differences in per capita funding. These changes in resource distribution among municipalities were also seen in Portugal, where Santos et al. (2012) found that the introduction of ecological indicators in the fiscal transfer scheme greatly affected the funding differences among municipalities. And were found in Brazil too, where it benefited low-

income and native communities, since they were the ones living in protected land areas and that way could spend more money coming from EFTs in education, subsistence, healthcare or infrastructure (Nascimento et al. 2011, May et al. 2013).

Redistributing equalisation transfers in this zero-sum game, from large and urban to small and rural local governments would help addressing the gap in access and quality of local public services (Alloza et al., 2021). As in the rest of Europe, Basque rural towns and even intermediate-level cities are experiencing population decline and aging, while economic activity is increasingly concentrating in cities that serve as capital cities. As first suggested by Rodriguez-Pose (2018), the abandonment feeling of these territories is already having political consequences, with the raise of provincial parties in Spain as paradigmatic example.

Finally, this paper is only a start point in the research field on the incorporation of environmental goals into local fiscal equalisation, since it applies the idea of greening intergovernmental fiscal relations introduced by literature on EFTs and illustrates the proposal with an example to stimulate the debate. Furthermore, a logical extension of this research involves adapting the proposed approach, with its relevant specifics, to the realm of regional equalisation, as regional governments grapple with opportunity costs and, consequently, incentive issues regarding the implementation of their environmental policies, in addition to the corresponding expenditure needs, analogous to those considered in the study for local governments.

Further research should extend the analysis for a larger set of jurisdictions and for a more extensive timeframe, as reported simulations outcomes are limited to the Basque country for the 2016-2019 period due to data availability issues. In addition, if equalisation schemes start applying this approach in the future, there will be data available on the behavioural change caused by this policy, paving the way to calculate elasticities and carry out not only static, but also dynamic simulations.

References

- Adams, V. M., Pressey, R. L., and Naidoo, R. (2010). Opportunity costs: Who really pays for conservation?. *Biological Conservation*, 143(2), 439-448. https://doi.org/10.1016/j.biocon.2009.11.011
- Alloza, M., González-Díez, V., Moral-Benito, E., and Tello-Casas, P. (2021). El acceso a servicios en la España rural. *Banco de España, Documentos Ocasionales*, 2122. <u>https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/Docu</u> <u>mentosOcasionales/21/Fich/do2122.pdf</u>
- Anderson, T.L., Hill, P.J. (1996). Environmental federalism: thinking smaller. PERC Policy Series,IssueNo.PS-8,Bozeman,MT.https://www.perc.org/wp-content/uploads/2018/02/ps8.pdf
- Ardiansyah, F., and Jotzo, F. (2013). Decentralization and avoiding deforestation: The case of Indonesia. In Howes, S., and Govinda Rao, M. (eds). *Federal Reform Strategies: Lessons from Asia and Australia*. Oxford, UK: Oxford University Press, 274–302. <u>https://doi.org/10.1093/acprof:oso/9780198092001.003.0009</u>
- Azzoni, C. R., and Isai, J. Y. (1994). Estimating the costs of environmental protection in Brazil. *Ecological Economics*, 11(2), 127-133. <u>https://doi.org/10.1016/0921-8009(94)90023-X</u>

- Boadway, R., and Shah, A. (2007). Intergovernmental Fiscal Transfers: Principles and Practice. *Public Sector Governance and Accountability.* Washington, DC: World Bank. <u>https://openknowledge.worldbank.org/handle/10986/7171</u>
- Borie, M., Mathevet, R., Letourneau, A., Ring, I., Thompson, J. D., and Marty, P. (2014). Exploring the contribution of fiscal transfers to protected area policy. *Ecology and Society*, 19(1). <u>https://www.jstor.org/stable/26269477</u>
- Boroumand, R. H., Goutte, S., Porcher, T., and Stocker, T. F. (2022). A fair and progressive carbon price for a sustainable economy. *Journal of Environmental Management*, 303, 113935. https://doi.org/10.1016/j.jenvman.2021.113935
- Campos, L. D. R. (2000). ICMS Ecológico: experiências nos estados do Paraná, São Paulo, Minas Gerais e alternativas na Amazônia. *Trabalho apresentado na 3ª reunião temática do programa piloto para proteção de florestas tropicais*. Cuiabá (MT).
- Canan, S., and Ceyhan, V. (2020). The link between production efficiency and opportunity cost of protecting environment in TR83 region, Turkey. *Environmental Science and Pollution Research*, 27(28), 35112-35125. <u>https://doi.org/10.1007/s11356-020-09726-9</u>
- Cao, H., Qi, Y., Chen, J., Shao, S., and Lin, S. (2021). Incentive and coordination: Ecological fiscal transfers' effects on eco-environmental quality. *Environmental Impact Assessment Review*, 87, 106518. <u>https://doi.org/10.1016/j.eiar.2020.106518</u>
- Carattini, S., Kallbekken, S., and Orlov, A. (2019). How to win public support for a global carbon tax. *Nature*, 565, 289–291 (2019) <u>https://doi.org/10.1038/d41586-019-00124-x</u>
- Cheng, Y., Ma, B., and Sun, Y. (2023). Does central ecological transfer payment enhance local environmental performance? Quasi-experimental evidence from China. *Ecological Economics*, 212, 107920. <u>https://doi.org/10.1016/j.ecolecon.2023.107920</u>
- Clinch, J. P., Dunne, L., and Dresner, S. (2006). Environmental and wider implications of political impediments to environmental tax reform. *Energy Policy*, 34(8), 960-970. <u>https://doi.org/10.1016/j.enpol.2004.08.048</u>
- Courchene, T. J., and Beavis, D. A. (1973). Federal-provincial tax equalization: an evaluation. *Canadian Journal of Economics*, 483-502. <u>https://doi.org/10.2307/134086</u>
- De Mello, L., and Ter-Minassian, T. (2023). Decarbonisation and intergovernmental fiscal relations: Policy challenges and reform options, OECD Working Papers on Fiscal Federalism, No. 43, OECD Publishing, Paris, <u>https://doi.org/10.1787/c434c385-en</u>.
- Dougherty, S., and Montes-Nebreda, A. (2023). The multi-level fiscal governance of ecological transition, *OECD Working Papers on Fiscal Federalism*, No. 44, OECD Publishing, Paris, <u>https://doi.org/10.1787/2051f0f7-en</u>.
- Droste, N., Lima, G. R., May, P. H., and Ring, I. (2017). Municipal responses to ecological fiscal transfers in Brazil: a microeconometric panel data approach. *Environmental Policy and Governance*, 27(4), 378-393. <u>https://doi.org/10.1002/eet.1760</u>
- Droste, N., Ring, I., Santos, R., and Kettunen, M. (2018a). Ecological fiscal transfers in Europe– evidence-based design options for a transnational scheme. *Ecological Economics*, 147, 373-382. <u>https://doi.org/10.1016/j.ecolecon.2018.01.031</u>
- Droste, N., Becker, C., Ring, I., and Santos, R. (2018b). Decentralization effects in ecological fiscal transfers: a Bayesian structural time series analysis for Portugal. *Environmental and Resource Economics*, 71(4), 1027-1051. https://doi.org/10.1007/s10640-017-0195-7

- Droste, N., Farley, J., Ring, I., May, P. H., and Ricketts, T. H. (2019). Designing a global mechanism for intergovernmental biodiversity financing. *Conservation Letters*, 12(6), e12670. <u>https://doi.org/10.1111/conl.12670</u>
- EEA (2007). Climate change: the cost of inaction and the cost of adaptation. *European Environmental Agency Technical Report*. No 13/2007, Copenhagen. https://www.eea.europa.eu/publications/technical report 2007 13/file
- European Court of Auditors (2020). *Annual reports concerning the financial year 2019*. <u>https://www.eca.europa.eu/en/Pages/DocItem.aspx?did=53898</u>.
- Ewers, H. J., Rehbinder, E., and Wiggering, H. (1997). Umweltbezogene Erweiterung des Finanzausgleichs. Zeitschrift für Gesetzgebung, 2, 135-147.
- Ferede, E. (2014). The Incentive Effects of Equalization Grants on Fiscal Policy. SPP Research Paper, 07.23. <u>https://dx.doi.org/10.2139/ssrn.2510562</u>
- Ferraro, P. J. (2002). The local costs of establishing protected areas in low-income nations: Ranomafana National Park, Madagascar. *Ecological Economics*, 43(2-3), 261-275. <u>https://doi.org/10.1016/S0921-8009(02)00219-7</u>
- Gainza, X., and Montes-Nebreda, A. (2023). The Waste War: on the electoral costs of local sustainability policies. *Journal of Environmental Policy & Planning*, 1-17. <u>https://doi.org/10.1080/1523908X.2023.2238638</u>
- Gong, C., Zhang, J., and Liu, H. (2021). Do industrial pollution activities in China respond to ecological fiscal transfers? Evidence from payments to national key ecological function zones. *Journal of Environmental Planning and Management*, 64(7), 1184-1203. https://doi.org/10.1080/09640568.2020.1813695
- Gonzalez-Garcia, S., Manteiga, R., Moreira, M. T., and Feijoo, G. (2018). Assessing the sustainability of Spanish cities considering environmental and socio-economic indicators. *Journal of Cleaner Production*, 178, 599-610. <u>https://doi.org/10.1016/j.jclepro.2018.01.056</u>
- Goulder, L. H. (1995). Environmental taxation and the double dividend: a reader's guide. *International Tax and Public Finance*, 2(2), 157-183. <u>https://doi.org/10.1007/BF00877495</u>
- Guo, S., Wen, L., Wu, Y., Yue, X., and Fan, G. (2020). Fiscal decentralization and local environmental pollution in China. *International Journal of Environmental Research and Public Health*, 17(22), 8661. <u>https://doi.org/10.3390/ijerph17228661</u>
- Harrison, K. (1996). *Passing the Buck: Federalism and Canadian Environmental Policy*. University of British Columbia Press, Vancouver, Canada. <u>https://dx.doi.org/10.14288/1.0086372</u>
- He, L., Wu, M., Wang, D., and Zhong, Z. (2018). A study of the influence of regional environmental expenditure on air quality in China: the effectiveness of environmental policy. *Environmental Science and Pollution Research*, 25(8), 7454-7468. https://doi.org/10.1007/s11356-017-1033-8
- HM Government (2022). Levelling up the United Kingdom. Secretary State for Levelling Up, Housing and Communities, London. <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmen</u> <u>t_data/file/1052708/Levelling_up_the_UK_white_paper.pdf</u>
- Hossu, C. A., Iojă, I. C., Mitincu, C. G., Artmann, M., and Hersperger, A. M. (2021). Assessing planning implementation using the conformance and performance approach: The case of

Romania's local environmental action plans. *Journal of Environmental Management*, 299, 113680. <u>https://doi.org/10.1016/j.jenvman.2021.113680</u>

- Huang, Y., and Zhou, Y. (2020). How does vertical fiscal imbalance affect environmental pollution in China? New perspective to explore fiscal reform's pollution effect. *Environmental Science and Pollution Research*, 27(25), 31969-31982. <u>https://doi.org/10.1007/s11356-020-09072-w</u>
- Ihobe (2019). Evaluación de la vulnerabilidad y riesgo de los municipios vascos ante el cambio climático. Departamento de Medio Ambiente, Planificación Territorial y Vivienda. Gobierno Vasco. Vitoria-Gasteiz. <u>https://www.euskadi.eus/contenidos/documentacion/municipios_cc/es_def/adjuntos/vul nerabilidad_municipios_cambio_climatico.pdf</u>
- Irawan, S., and Tacconi, L. (2016). Intergovernmental Fiscal Transfers, Forest Conservation and Climate Change. Northampton, MA: Edward Elgar. <u>https://www.e-</u> elgar.com/shop/gbp/intergovernmental-fiscal-transfers-forest-conservation-and-climatechange-9781784716592.html
- Karsenty, A., Vogel, A., and Castell, F. (2014). Carbon rights, REDD+ and payments for environmental services. *Environmental Science & Policy*, 35, 20-29. <u>https://doi.org/10.1016/j.envsci.2012.08.013</u>
- Köthenbürger, M. (2002). Tax competition and fiscal equalization. *International Tax and Public Finance*, 9(4), 391-408. <u>https://doi.org/10.1023/A:1016511918510</u>
- Kunce, M., and Shogren, J. F. (2008). Efficient decentralized fiscal and environmental policy: a dual purpose Henry George tax, *Ecological Economics*, 65(3), 569–573. https://doi.org/10.1016/j.ecolecon.2007.08.004
- Liu, L., Ding, D., and He, J. (2019). Fiscal decentralization, economic growth, and haze pollution decoupling effects: a simple model and evidence from China. *Computational Economics*, 54(4), 1423-1441. <u>https://doi.org/10.1007/s10614-017-9700-x</u>
- Loft, L., Pham, T.T., and Luttrell, C. (2014). Lessons from payments for ecosystem services for national REDD+ benefit sharing mechanisms. *Policy Brief*, 68. Bogor, Indonesia: *CIFOR*. <u>https://www.cifor.org/publications/pdf_files/infobrief/4488-infobrief.pdf</u>
- Loureiro, W. (2002). ICMS Ecológico-A consolidação de uma experiência brasileira de incentivo a Conservação da Biodiversidade. In *Congresso Brasileiro de Unidades de Conservação*, Vol. 3, 02-12. <u>https://acervodigital.ufpr.br/bitstream/handle/1884/25377/T%20-</u> %20LOUREIRO%2c%20WILSON.pdf?sequence=1&isAllowed=y
- Martinez-Vazquez, J. (2021). Adapting Fiscal Decentralization Design to Combat Climate Change. *Climate Governance Papers.* World Bank, Washington, D. C. <u>http://documents.worldbank.org/curated/en/654941625173951298/Adapting-Fiscal-</u> <u>Decentralization-Design-to-Combat-Climate-Change</u>
- Mato Grosso (2009). ICMS Ecológico: Conservando a Biodiversidade Mato-grossense. Secretaria de Estado do Meio Ambiente SEMA. Superintendência de Biodiversidade. Coordenadoria de Unidades de Conservação. Mato Grosso, Brazil: SEMA/Cuiabá
- May, P. H., Gebara, M. F., Conti, B. R., and Lima, G. R. (2012). The Ecological Value Added Tax (ICMS-Ecológico) in Brazil and its effectiveness in State biodiversity conservation: a comparative analysis, *Proceedings of the 12th Biennial Conference of the International*

Society for Ecological Economics, Rio de Janeiro. https://www.isecoeco.org/conferences/isee2012-versao3/pdf/sp33.pdf

- May, P.H., Gebara, M.F., Lima, G., Jordão, C., Nogueira, P., and Grieg-Gran, M. (2013). The effectiveness and fairness of the Ecological ICMS as a fiscal transfer for biodiversity conservation. A tale of two municipalities in Mato Grosso, Brazil. Paper prepared for the Policymix project and presented at the *European Society for Ecological Economics Conference*, Lille: https://policymix.nina.no/Portals/policymix/Documents/Summaries/May%20et%20al%20 2013%20ICMS-E.pdf?ver=D79Ij4KK1xyZ2i8LzhdfVA%3d%3d
- Mazziotta, M., and Pareto, A. (2013). Methods for constructing composite indices: One for all or all for one. *Rivista Italiana di Economia Demografia e Statistica*, 67(2), 67-80. https://www.istat.it/en/files/2013/12/Rivista2013 Mazziotta Pareto.pdf
- MITECO (2021a). Directrices para la creación de Zonas de Bajas Emisiones. Ministerio para laTransiciónEcológicayelRetoDemográfico.Madrid.https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/participacion-publica/borradordirectricesparalacreaciondezonasdebajasemisionestcm30-530517.pdf
- Montes-Nebreda, A., and Moreno, J. (2022). Acelerar la transición ecológica: el Mecanismo de Ajuste en Frontera y la Unión Fiscal. In Eurobasque (2022). *El futuro de la Unión Europea: Aportaciones a la Conferencia*, 183-244. Dykinson. Madrid. <u>https://www.torrossa.com/en/resources/an/5294415</u>
- Mumbunan, S., Ring, I., and Lenk, T. (2012). Ecological fiscal transfers at the provincial level in Indonesia. UFZ-Diskussionspapiere, No. 06/2012. Leipzig, Germany: UFZ. <u>https://www.econstor.eu/bitstream/10419/55837/1/687842077.pdf</u>
- Musgrave, R.A. (1983). Who should tax, where, and what? In McLure Jr, C.E. (ed), *Tax Assignment in Federal Countries*. Canberra: Australian National University Press. https://openresearch-repository.anu.edu.au/bitstream/1885/114811/2/b11388808.pdf
- Nascimento M., Van Bellen H. M., Borget A., and Nascimento, M. (2011). Ecological-ICMS: Analysis of financial aspects and sustainability in the municipalities of the state of Paraná. *Revista Capital Científico*, Guarapuava, 9, 2.
- Nieto Masot, A., Cárdenas Alonso, G., and Engelmo Moriche, Á. (2020). Design of a Development Index for Spanish Municipalities. *Sustainability*, 12(21), 8910. https://doi.org/10.3390/su12218910
- Nikitina, E. (2019). Opportunity cost of environmental conservation in the presence of externalities: Application to the farmed and wild salmon trade-off in Norway. *Environmental and Resource Economics*, 73(2), 679-696. <u>https://doi.org/10.1007/s10640-018-0278-0</u>
- Niskanen, W. A. (1971). *Bureaucracy and representative government*. Chicago, Aldine Atherton. <u>https://worldcat.org/en/title/162572</u>
- Oates, W.E. (1972). Fiscal Federalism. Harcourt Brace Jovanovich, New York.
- Oates, W. E. (1999). An essay on fiscal federalism. *Journal of Economic Literature*, 37(3), 1120-1149. <u>https://www.jstor.org/stable/2564874</u>
- Oates, W. E. (2005). Toward a second-generation theory of fiscal federalism. *International Tax* and Public Finance, 12(4), 349-373. <u>https://doi.org/10.1007/s10797-005-1619-9</u>

OCTE – Órgano de Coordinación Tributaria de Euskadi (2020). Informe Anual Integrado de la Hacienda Vasca 2018. *Departamento de Economía y Hacienda*. Gobierno Vasco. Vitoria – Gasteiz.

https://www.euskadi.eus/contenidos/informacion/iai_2018/es_def/adjuntos/IAI2018.pdf

- OECD, and EC JRC (2008). Handbook on constructing composite indicators: methodology and user guide. *OECD Publishing*. Paris. <u>https://www.oecd.org/sdd/42495745.pdf</u>
- OECD (2020). A Territorial Approach to the Sustainable Development Goals: Synthesis report, OECD Urban Policy Reviews, OECD Publishing, Paris, <u>https://doi.org/10.1787/e86fa715-en</u>
- OECD (2021). Fiscal Federalism 2022: Making Decentralisation Work, OECD Publishing, Paris, https://doi.org/10.1787/201c75b6-en.
- OECD (2023). City-to-City Partnerships to Localise the Sustainable Development Goals, OECD Urban Studies, OECD Publishing, Paris, <u>https://doi.org/10.1787/d2fe7530-en</u>.
- Olson, M. (1969). The principle of "fiscal equivalence": the division of responsibilities among different levels of government. *American Economic Review*, 59(2), 479-487. https://www.jstor.org/stable/1823700
- Onrubia, J. (2016). Financiación autonómica y administración tributaria, *Mediterráneo Económico*, 30, 231-271. <u>https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/publicaciones-</u> periodicas/mediterraneo-economico/30/mediterraneo-economico-30.pdf
- Petchey, J., and Levtchenkova, S. (2002). The welfare effects of fiscal equalisation in a federal economy with factor mobility and strategic behaviour. Mimeo, *School of Economics and Finance*, Curtin University.
- Petchey, J., and Levtchenkova, S. (2004). Fiscal equalisation in Australia: proposals for an efficiency-based system. *Economic Papers*, 23(2), 189–200. <u>https://doi.org/10.1111/j.1759-3441.2004.tb00364.x</u>
- Reckien, D., Salvia, M., Heidrich, O., Church, J. M., Pietrapertosa, F., De Gregorio-Hurtado, S., D'Alonzo, V., Foley, A., Simoes, S. G., Lorencová, E. K., Orru, H., Orru, K., Wejs, A., Flacke, J., Olazabal, M., Geneletti, D., Feliu, E., Vasilie, S., Nador, C., Krook-Riekkola, A., Matosovic, M., Fokaides, P. A., Ioannou, B. I., Flamos, A., Spyridaki, N-A., Balzan, M. V., Fülöp, O., Paspaldzhiev, I., Grafakos, S., and Dawson, R. (2018). How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. *Journal of Cleaner Production*, 191, 207-219. <u>https://doi.org/10.1016/j.jclepro.2018.03.220</u>
- Ring, I. (2001). Ökologische Aufgaben und ihre Berü cksichtigung im kommunalen Finanzausgleich. Zeitschrift für rangewandte Umweltforschung, *Sonderheft* 13, 236-249.
- Ring, I. (2002). Ecological public functions and fiscal equalisation at the local level in Germany. *Ecological Economics*, 42(3), 415-427. <u>https://doi.org/10.1016/S0921-8009(02)00124-6</u>
- Ring, I. (2008a). Integrating local ecological services into intergovernmental fiscal transfers: The case of the ecological ICMS in Brazil. *Land Use Policy* 25, 485–497. https://doi.org/10.1016/j.landusepol.2007.11.001
- Ring, I. (2008b). Compensating municipalities for protected areas: Fiscal transfers for biodiversity conservation in Saxony, Germany. GAIA: *Ecological Perspectives for Science and Society* 17, 143–151. <u>https://doi.org/10.14512/gaia.17.S1.12</u>

- Rodríguez-Pose, A. (2018). The revenge of the places that don't matter (and what to do about it). *Cambridge Journal of Regions*, Economy and Society, 11(1), 189-209. <u>https://doi.org/10.1093/cjres/rsx024</u>
- Rose, M. T. (1999). Überlegungen zur Berücksichtigung der ökologischen Ausgleichsfunktion ländlicher Räume im kommunalen Finanzausgleich–dargestellt am Beispiel des Landes Nordrhein-Westfalen. Zeitschrift für angewandte Umweltforschung, 12(2), 267-279.
- Santos, R., Ring, I., Antunes, P., and Clemente, P. (2012). Fiscal transfers for biodiversity conservation: The Portuguese Local Finances Law. *Land Use Policy* 29, 261–273. https://doi.org/10.1016/j.landusepol.2011.06.001
- Scheberle, D. (1997). Federalism and Environmental Policy: Trust and the Politics of Implementation. Georgetown University Press, Washington, DC. https://press.georgetown.edu/Book/Federalism-and-Environmental-Policy
- Schick, A. (1998). Why Most Developing Countries Should Not Try New Zealand's Reforms, *World Bank Research Observer* 13, 125–31. <u>https://www.jstor.org/stable/3986392</u>
- Smoke, P., and Cook, M. (2022). Administrative Decentralization and Climate Change. World Bank. Washington. <u>http://hdl.handle.net/10986/36911</u>
- Snoddon, T., and Tombe, T. (2019). Analysis of Carbon Tax Treatment in Canada's Equalization Program. *Canadian Public Policy*, 45(3), 377-392. <u>https://doi.org/10.3138/cpp.2019-036</u>
- Spanish Government (2020). Executive Summary: Recovery, Transformation and Resilience Plan. Madrid: <u>https://www.lamoncloa.gob.es/temas/fondos-</u> <u>recuperacion/Documents/05052021-Executive_Summary_Recovery_Plan.pdf</u>
- Stern, N. H. (2007). *The economics of climate change: the Stern review*. Cambridge University press. <u>https://www.lse.ac.uk/granthaminstitute/publication/the-economics-of-climate-change-the-stern-review/</u>
- Tang, Z., Brody, S. D., Quinn, C., Chang, L., and Wei, T. (2010). Moving from agenda to action: evaluating local climate change action plans. *Journal of Environmental Planning and Management*, 53(1), 41-62. <u>https://doi.org/10.1080/09640560903399772</u>
- Yan, Z., and Honghua, C. (2020). Did the transfer payment in key eco-functional areas improve the eco-environtment? Based on the results of PSM. *South China Journal of Economics*, 39, 125–140. 10.19592/j.cnki.scje.371556

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Abadiño	0.25125886	.09160712	11874254	01039099	.20524965	.13414476	04510801	-0.00966723
Abaltzisketa	.39960016	23804589	.37027609	18709869	.30456362	.46967555	.89679639	.16540056
Abanto y Ciérvana-Abanto	.24411688	.14506192	.12780655	.0132403	.3157993	-1.0467719	0320668	.04819512
Zierbena	.24411000	.14500192	.12780055	.0152405	.5157995	-1.0407719	0520008	.04619512
Aduna	.39452653	.28066676	-2.1160146	-1.0810916	25447161	.14357801	1.2422844	84935546
Agurain/Salvatierra	.01899979	77177262	53953978	13204744	.3065617	42645483	03797035	35453541
Aia	.40316942	.18316976	14139739	.4954192	-2.0941312	.40806773	-1.0064387	.08074557
Aizarnazabal	13364972	.40529313	.20282693	.20825999	00895174	.02716897	1.0568133	.28342888
Ajangiz	.30872326	.37275111	06315247	.4358634	.06324471	.40596569	0083231	.20467015
Albiztur	05575246	28752303	.3976921	71186049	.09322408	.62046582	1.3054786	.01573507
Alegia	.39505762	.20689147	.37373368	.04059687	.32540418	.45245091	1.0858128	.31931453
Alegría Dulantzi	.49880606	595581	0861284	16081697	.29806186	29468257	06655054	14458763
Alkiza	33451699	18934025	.39431948	.03316134	.03069812	.69919745	.91747415	.2007697
Alonsotegi	.12286079	.16861897	83215193	.72824714	.29827305	.23629244	07417006	02298731
Altzaga	.28291519	06661797	.50870311	.3352779	.02558551	.52713548	.74647117	.37577334
Altzo	.42027521	.05559736	.47400672	39982954	.32540418	.62057873	1.1771541	.21276153
Amezketa	.23877403	09187648	.2196892	49920657	.24292485	.56258483	1.2339041	.06375819
Amorebieta-Etxano	.36844102	.38795361	11138837	.17829562	.27737058	.17875655	10686151	.09935177
Amoroto	.07146325	.48221951	23986791	.57491429	.1693809	.81274699	06276945	.19425191
Amurrio	.14092283	.15670673	.13935516	.05079026	.27810246	.34210548	.00926402	.10974854
Andoain	.33306649	.23012876	.24790261	.34403972	.31709536	07501038	.54344684	.29804585
Anoeta	.41525106	.28593987	.21121962	62936642	.30253181	04327478	1.0926029	.05653865
Antzuola	.38256975	15748849	.50178393	.55488558	.2889415	.73589864	.8968886	.45631616
Arakaldo	.20787089	.41836796	.27683478	12782488	-1.382441	.36652277	.20884433	.16567205
Arama	.44594969	03698881	.15311461	-1.2905478	.32540418	04447806	1.3268438	18837449
Aramaio	.31433956	34354176	.94133685	23484406	.21531691	.78047589	.39244629	.2843595
Arantzazu	.2926266	.48246422	.28116338	.33157722	.20401269	.30750083	17490152	.28497546
Areatza	.24245044	.07168363	.31354863	.41600395	3386125	.81176911	17298371	.27445261
Aretxabaleta	.40132676	22578085	.41519058	.46696451	.30042336	.29027933	.72927864	.35999743
Armiñón	.04627687	28931357	07200864	76340787	.21581975	42398778	43187202	35270705

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Arraia-Maeztu	72885914	-1.1656712	.0240958	56054196	06430395	.58857992	-1.0310506	4707301
Arrankudiaga	.08734549	.27852252	31421179	.00418545	.26437446	.57063714	19143164	05486834
Arrasate/Mondragón	.36987483	04525495	.1462478	.48908061	.2814061	03445128	.52618722	.26962946
Arratzu	.30135955	.46358357	.2066033	.37693287	.32540418	.67559962	36557567	.26624464
Arratzua-Ubarrundia	.34278072	3412722	-2.5877198	69060945	.32540418	39840139	-1.2894887	-1.245785
Arrieta	15651011	.34508439	.12801833	.083388	.26621663	.59577069	06838657	.12220887
Arrigorriaga	.10801696	.27212918	.26491547	.41316392	.23471708	50051452	.15984001	.26225387
Artea	.24211546	.3860368	11176323	00094095	.10813223	.56228603	18683817	.04018745
Artzentales	-2.3839236	01449701	.08946625	.03000581	23316566	.5261715	12248256	14186702
Artziniega	.20988316	.27641389	.39047026	09671219	.28793452	.37145223	.05856332	.17848017
Asparrena	-2.2729738	89467344	55048755	.04885944	.15769034	.35023307	26256285	4941808
Asteasu	.40344019	.12062594	.17791724	06762681	.11109322	.2626578	1.0452524	.19743255
Astigarraga	.29841604	.186371	07905046	.2841126	.21952085	59391565	.07770655	.0976398
Ataun	.22227616	41483573	.34165305	.08349229	.17925394	.86500397	1.0505424	.22663104
Atxondo	.24777995	.05187424	25147944	20831695	.07561803	.52819491	07775848	11044578
Aulesti	.24386661	.28368906	.36245259	08119939	.32540418	.79716503	06694	.18043807
Ayala/Aiara	39297164	.00126289	.25672867	34743984	.06172161	.44844569	16194242	04947236
Azkoitia	.39533759	07369827	.28382706	.62612899	.30123261	.50398377	.38931649	.36152244
Azpeitia	.4006453	.07359374	.18053542	.506254	.25523983	.36685942	.31853197	.30084088
Añana	13216605	54982635	14023655	41797385	39662909	.38370972	50035747	30126623
Bakio	.26483437	.4324843	01719574	.26168834	.05570389	.01987404	99337988	.06535466
Baliarrain	.36557239	09723186	13000725	21522694	.32540418	.29809394	1.6007158	.06699334
Balmaseda	.25456448	01584182	.40259322	.43739067	.29174978	.5519495	03834721	.30269809
Barakaldo	.25336535	.26882408	.27629455	.6749623	.26812855	-1.2576746	.11497876	.32611099
Barrika	.25429725	.28868571	.19944203	.11215406	.14196775	40701588	6510725	.08829528
Barrundia	93354183	63742751	.76809702	5924272	.07655431	.22959258	60686736	13862845
Basauri	.24492696	17522017	.33324052	02611077	.31623936	-3.4021538	00132044	02146089
Baños de Ebro/Mañueta	7920493	30292464	.23309822	35310494	.20826653	2317021	9057104	23006779
Beasain	.39080074	13360433	.39290269	.07196671	.26073223	.32788093	.70169514	.2434821
Bedia	.26530023	.34187567	03434788	45103438	.27474442	.72480171	11141372	06296147

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Beizama	.33306627	18056677	.33170928	30227826	32137475	.73377365	1.2970215	.16786046
Belauntza	.39451036	.02625332	04885295	90632335	.32540418	.12321276	1.148142	145051
Berango	.26637816	.22891591	.43430251	.18587111	.32540418	8065222	09860172	.22075004
Berantevilla	-8.1688055	34363467	-3.4268119	-1.1323372	.32540418	16964336	-1.3482854	-2.3256783
Berastegi	.3951595	29326714	.23169131	.21242433	.19542236	.75731831	1.4805847	.29752179
Bergara	.46309936	.09135988	.19635164	.36437183	.27894109	.40977706	.58775119	.29748154
Bermeo	.29044181	.22431313	.34327046	.54366616	.26688993	.24897198	03175647	.34366896
Bernedo	-1.9872266	-1.116324	-2.0728582	31360999	28149171	.28140081	-1.3394492	-1.2347253
Berriatua	.26816414	.36990449	01676649	.03847164	.14996551	.58982995	.12091962	.11416683
Berriz	.38326409	.13787922	.4489178	04640657	.30605481	.37104384	.08145049	.20864383
Berrobi	.41705156	.2213525	.56893822	.39488296	.2291062	.27218702	1.5128963	.53158545
Bidania-Goiatz	01556773	43004881	.21816641	.17206562	1637715	.52892739	1.0800797	.18219052
Bilbao	.25119362	.11233274	.24494232	25448996	.17231779	-2.6135672	.07446399	04293879
Busturia	.28884122	.30436352	.2321113	.74586949	.09008851	.5035363	36943676	.3564252
Campezo/Kanpezu	13808406	93567409	09094548	34474056	.13778051	.5666311	-1.0628798	36722748
Deba	.39363373	.27523845	09665773	.24204396	61567957	.32950612	21456092	.10400951
Derio	.29305907	.39881581	-1.082122	.04180203	17902701	-2.5916707	71693187	42946398
Dima	.24396259	.06463819	.22629435	.00932206	.26505177	.6544494	13799914	.11771951
Donostia / San Sebastián	.17576188	.03804183	.12275315	39368331	.07270999	-2.138375	2850659	16121462
Durango	.2637527	.26695161	.4322307	.14878805	.27697157	-1.2315958	.2041468	.22810146
Ea	.28266703	.53869515	.05554137	.28719131	12701455	.62229377	1687835	.21437322
Eibar	.39616409	.0012637	.30314564	.38231842	.28726878	16632816	.24391041	.26758215
Elantxobe	.2544388	.34917593	.29998688	.54390745	31076676	.43952302	23116136	.33260367
Elburgo/Burgelu	00673148	47730804	.04603088	62660515	79536731	28275219	5279207	30736811
Elciego	60152693	36382331	.18132117	01785842	67869972	31957998	-1.0104306	15246524
Elduain	.39485166	24189257	97430452	.42848616	.32540418	.94431057	1.4805847	02986256
Elgeta	.40687604	0241047	.32025474	.10412803	.11762237	.73622287	.57234517	.24828817
Elgoibar	.39359309	.186177	.16149165	.31040723	.29699937	.4034055	03723124	.218288
Elorrio	.25311001	.15189884	.12699964	32124324	.24417946	.30944779	06714354	00836787
Elvillar/Bilar	77000836	50018989	.30413171	.14793263	.32540418	19192926	-1.0334445	09151534

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Erandio	.09438143	.19340878	23642187	.41809013	.31458985	-1.2775649	22366115	.01794547
Ereño	.06302004	.26637366	.29959033	01170675	.01310355	.81755632	43870095	.12910616
Ermua	.23795708	02041806	.40162968	.23145949	.29041822	61858017	.31475997	.23016609
Errenteria	.36664435	.19250832	.44632503	.5546458	.31368527	20329307	.35329315	.40383674
Errezil	.7555998	2072741	.32042712	.31303277	04880481	.57562441	1.2897919	.37462603
Erriberagoitia/Ribera Alta	20717667	60399542	.33930692	93720385	-4.2556296	.40090165	65765829	32599313
Errigoiti	26119215	.362066	.41753827	.38631519	10711161	.65321893	.39604802	.353034
Eskoriatza	.13411894	39187117	.33079338	.28635818	.20952886	.50469989	.658444	.23155888
Etxebarri	.27155698	.10946783	.48790912	.48782287	.32540418	-1.9227547	.17792093	.30091172
Etxebarria	.24335747	.24464531	.19953706	06856061	.05986721	.59714682	.08315852	.13067021
Ezkio-Itsaso	.37736845	08460883	71635408	42586272	.11600395	.57199706	.58557591	2795546
Forua	01110402	.35232487	.2479884	.4052555	.32540418	.43516054	24295502	.25120141
Fruiz	.25276201	.52982356	17270453	.48405966	.32540418	.19963825	03874055	.19127488
Gabiria	.39865093	09086101	.06040403	4317179	0488485	.54177252	1.1023488	.02991948
Gaintza	.27951957	06647918	.38046096	.06410366	.32540418	.65886814	.43312426	.22423747
Galdakao	.24945345	.34620146	.21699305	.2276438	.3148087	4301075	.11920379	.21008077
Galdames	.09552175	.10081511	.1349191	.52850043	.32540418	.51727754	14113706	.23404464
Gamiz-Fika	.25314423	.46996516	.37562139	.40879955	.23537036	.17448996	.0128624	.34872451
Garai	32503424	.23001455	-1.0250757	07021972	03491077	.63534395	12974809	34902322
Gatika	.25558532	.49015585	.38647278	.12315579	.2310269	.22669487	.00144362	.26913161
Gautegiz Arteaga	.2870908	.48919453	15655075	.02987673	18452732	.27219627	31992272	.03052596
Gaztelu	74712881	10894388	.41702379	.28100687	05249198	.79701823	1.5112386	.32376312
Gernika-Lumo	.29969916	.21799928	.27036017	.50488127	.27025883	7524655	03334326	.27180232
Getaria	.39452664	.26949458	86615868	.23802223	44253965	17391338	62699428	21482785
Getxo	.24606618	.0142554	.47677687	.08214146	.30494021	-3.6202598	.12985687	.09321873
Gizaburuaga	.25553057	.47796965	18356961	0600201	06081748	.69264465	2051623	.01543661
Gordexola	.24568471	.38199738	.05420416	22392072	0765885	.78445218	14668562	.03946421
Gorliz	.25562032	.37405667	.15953272	.48010919	12961301	79437451	66219727	.18533788
Güeñes	.25425215	.23584395	.27814268	.46901455	.30085307	.32837182	11023302	.29308585
Harana/Valle de Arana	47774791	-1.2664412	.40798438	54300732	1108232	.51040439	78146422	31009243

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Hernani	.29968439	.19382432	08545907	.75048403	.28366666	.134868	.72025243	.32561619
Hernialde	.14169497	12707671	.22069983	30238658	.32540418	.39274973	.63604964	.04859942
Hondarribia	.2254721	.26479783	.07848021	25745854	16283688	-1.2868371	-5.1120937	52605568
Ibarra	.38657044	07609779	.49572743	.19255118	.32540418	21868214	1.0468682	.3369645
Ibarrangelu	.12930391	.3991089	2112591	.27042988	64940331	.61745002	41166719	.06311348
Idiazabal	.39537977	21507567	.15966371	25792395	.19627106	.50560241	.92339027	.07948988
lgorre	.26200076	.39730337	.29895779	.26350616	.28515125	.218727	15173978	.25424246
Ikaztegieta	.39557323	.31774734	.02956893	0376975	.32540418	1587885	1.1375046	.17920098
Irun	.23070043	.17818105	.1801186	03961567	.23290853	71466858	.80601102	.14490472
Irura	.41640343	.07075873	.55569794	.00746752	.32540418	16705726	.77259822	.30064726
Iruraiz-Gauna	.21255615	77610608	.36074657	75874297	.32540418	.15702641	23202832	22523368
Iruña Oka/Iruña de Oca	61174919	53023539	296117	53790858	.30947464	.04058279	-1.1129338	49525554
Ispaster	.25022241	.41759091	.26322162	.22469324	17621692	.73585253	.19967076	.28391186
Itsasondo	.59308096	07547998	.29427231	10746254	1225775	.70854929	1.3907229	.25861859
lurreta	.23478342	.39532427	-1.1830214	29191335	.32540418	02855836	05551802	41797724
Izurtza	.27583419	.22370819	-2.5906216	60597104	.32540418	.30978915	15780971	-1.0097049
Karrantza Harana/Valle de Carranza	-4.0183512	16120442	.20275197	.13652282	09803687	.3248874	12559593	22766916
Kortezubi	.28643752	.51708522	.10746895	.25056608	.17759996	.65782442	41210534	.19592818
Kripan	13796019	80634164	.25348865	.31971058	.32540418	.06801154	98037623	03834885
Kuartango	67185899	67729995	2.3301518	47854726	.18623511	.45524951	71443936	.43607918
Labastida/Bastida	73748008	45676952	.06336582	.13650202	30087002	02124608	94008967	15251587
Lagrán	92974487	-1.3773998	10445639	34332682	.17383644	.65150236	84746816	47538474
Laguardia	-1.9483612	66775681	83581165	38834786	-1.2865442	15827461	-1.1843679	77038206
Lanciego/Lantziego	73727811	33597914	.29550048	.32105729	.25040717	24225944	86258734	00010783
Lanestosa	-2.0468754	.03640156	.10647104	.41856994	.32540418	97767429	14456633	03834684
Lantarón	54753255	40715605	.19578491	52237407	00729945	02855196	54194933	24911332
Lapuebla de Labarca	71444109	22174786	.35250271	00861342	.17113002	64537198	85828956	07638764
Larrabetzu	.24276391	.53159254	17543442	.32747094	.19988832	.38892266	76441711	.07967066
Larraul	.10660121	04687745	.418037	.11334594	.32540418	.58243873	1.4122734	.33181058

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Lasarte-Oria	.3731262	.09533129	.44874835	.544964	.26266867	-1.3637989	.14018366	.32689702
Laudio/Llodio	.35105947	.31989047	.44046007	.24902585	.30959289	.17742411	.15839898	.32109423
Laukiz	.2569136	.38582597	.30609614	.09086419	.21141788	52375114	.00890552	.19115455
Lazkao	.37009493	.00532403	.54660465	.15252044	.26203442	.15921002	.72732567	.33560976
Leaburu	.15746197	.20089706	.18242059	22566811	.29046364	.26676635	.64282459	.10536929
Legazpi	.38761391	60499662	.4278633	.41801703	.28250307	.62510004	.98138485	.32749898
Legorreta	.22723663	.16291876	27206322	00893479	.26964481	.40739392	.82473583	.03995862
Legutio	-2.3311042	28144841	-2.473325	72785761	.16900465	39155918	27983745	-1.32184
Leintz-Gatzaga	.76569262	62260766	.27782064	07347271	-1.5402715	.87276582	1.0172686	.16569554
Leioa	.26492628	00759336	.12918055	.16671753	.27970985	-3.4024108	.1257553	.00703176
Lekeitio	05462673	.27023585	.32853369	.6074856	.16901959	-2.7776562	.04386578	.23944598
Lemoa	.2474095	.32421449	.11838103	10315394	.32540418	.10007873	11791271	.0683496
Lemoiz	.0889232	.43954472	.2824634	.47247095	.22132104	.25885031	52198397	.27145802
Leza	80806776	69405291	52678291	0943107	.00629987	01040271	-1.0583192	47406482
Lezama	.25465057	.42040044	.12338591	.27633133	.20095011	.02340475	71517823	.14130421
Lezo	.23588531	.07681177	12882475	45915167	.26779592	5275284	.12817783	16012994
Lizartza	.30091463	.03033989	.51637754	.02463919	01180469	.6814181	1.6633997	.39193803
Loiu	.26310434	.32292183	-2.1105402	-3.1066542	.20227643	-1.5440773	84213155	-1.7269554
Mallabia	-1.2233579	.05851807	-2.6661072	44498387	.04183912	.48616842	-2.4983182	-1.3438651
Markina-Xemein	.25082986	.32467461	.17170368	.33292272	.25957512	.71659773	.12802067	.26475872
Maruri-Jatabe	.26967127	.45370041	.23567886	.22139454	.24440788	.59731313	05393276	.25153603
Mañaria	.24450761	05285697	.24714083	06200435	.32540418	.65083435	05323917	.09347525
Mendaro	.38657721	.1775297	12716869	.56414218	.27735052	.74551907	52290746	.16216597
Mendata	.11489465	.4985847	.4172141	.20881613	.29027965	.89734176	33749767	.28718655
Mendexa	.07598876	.3559944	.05459935	.29691421	-13.891365	.38921311	21538157	.1611343
Meñaka	.00102704	.30991068	.21504198	.09537993	.03925022	.43460981	.01154978	.16428389
Moreda de lava/Moreda Araba	74223706	23335296	.36853502	20172038	.32540418	22458539	87617868	12079738
Morga	.25419081	.44361274	.18228982	.11268486	.05931339	.66221886	35382426	.17136426
Mundaka	.28545938	.13085579	.22912037	.38712441	-1.4896716	22909728	87806835	.1458409

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Mungia	.26009353	.37608874	.1733065	.41651383	.2524307	43951839	.12313251	.25829607
Munitibar-Arbatzegi Gerrikaitz	.255342	.19849358	.62001698	.0795704	.0103812	.79766166	03161655	.3081335
Murueta	.1225718	.49338213	-1.5300473	.48048293	51041537	.09924229	69063074	3495141
Muskiz	.24631075	.31135492	.36131523	.1532867	.23791463	5593261	35601519	.18102187
Mutiloa	.37855828	09368834	52943803	30597879	37745745	.5288858	.06977555	23160067
Mutriku	.39766302	.27950908	.26079598	.36817476	42449136	.50856928	.00432081	.29131398
Muxika	.15922318	.44577984	.3257479	.27786079	.01930771	.69564017	29253832	.27017319
Nabarniz	.44428861	.17550938	.27018552	.33624785	.32540418	.76893414	.12785455	.29374466
Navaridas	98788591	48262434	.43283921	33669793	30548563	15995373	94665232	20096618
Oiartzun	00920413	.12281925	67777717	41682778	12303862	.26037783	36542257	3643276
Okondo	43912356	.25531695	.41499372	14995818	.32540418	.72520921	08424613	.11556994
Olaberria	-2.7803996	.04714002	-1.7219683	-1.375114	24304459	27157638	.34362892	-1.1881944
Ondarroa	.24301724	.15855733	.32560891	.21330033	.29018067	46538752	.11937323	.21275347
Ordizia	.41424496	14900904	.22111536	.12311384	.32540418	87895044	.91716771	.17886208
Orendain	.44079674	.15071766	.10161631	.03059346	.32540418	.50209235	1.8411018	.29305429
Orexa	.38721162	.02511152	.23299241	.36325567	.32540418	.75900614	1.6633997	.40821211
Orio	.23958715	.37033903	.30203317	.46748608	73745555	29735432	03687387	.30465857
Ormaiztegi	.38496	.08021198	.38913221	10635985	.19994897	.2177404	.94267444	.23819921
Orozko	.02528426	0323805	.25856938	00193704	.17354237	.65148053	.00729229	.10740657
Ortuella	.25004931	.13029118	.2150688	09280705	.29590569	-1.8874828	.01092609	.01825852
Otxandio	14020808	20340018	.28650786	.24176788	.20932598	.31783652	1242138	.12871256
Oyón-Oion	71275744	47256199	.25192117	.24918888	.29280527	33969327	9383555	06580006
Oñati	.39577578	47050013	.92768514	.56774958	.14034723	.61449438	.55187808	.52154873
Pasaia	.44826075	.22294739	.4811582	.5396896	.31979661	98681037	.42374033	.40123086
Peñacerrada-Urizaharra	59810534	-1.2079227	.05610541	75102634	45887786	.58003208	-1.8348417	59086623
Plentzia	.25934805	.26377655	.30456311	.53607334	.23707195	85967042	12726817	.28387101
Portugalete	.24156094	18023986	.4469192	.51464718	.28451475	-4.4050267	.18797607	.16393524
Ribera Baja/Erriberabeitia	.96128114	29328526	-2.3819199	15731315	54508922	89142228	60604825	91036169
Samaniego	93184354	59917677	3092303	.03857536	42129519	08502062	-1.1113377	36316739

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
San Millán/Donemiliaga	-1.0858966	79232193	-1.3800907	75829899	86741761	.22409949	86066012	97437913
Santurtzi	.24542711	.09694792	.29353389	-2.1702315	.28494008	-3.1097306	.13642204	62551896
Segura	.38484154	12729403	.33951965	.00583515	.20543796	.48904192	.97729796	.23756735
Sestao	.23976591	20401399	31944221	.53141881	.2880039	-4.5977793	.17647467	10140874
Sondika	32463771	.09645646	22622871	-1.98835	.25985082	-1.8323055	73408054	82821947
Sopela	.26442337	.19911296	.34430456	13456291	.00308957	-1.5177087	.03640746	.07589903
Sopuerta	.06625375	.19430863	.27393698	.38725394	.15526291	.56743617	11821747	.25346886
Soraluze-Placencia de las Armas	.38574287	.01118158	.43858	.53248013	.32540418	.41090483	.27892176	.38336217
Sukarrieta	.26298084	.2749563	56513386	.42969286	.28691866	17146188	71963608	0727672
Tolosa	.40644157	.08424687	.78919267	.21287	.26841204	.27221523	.52151418	.43496963
Trucios-Turtzioz	.24543339	16985559	.19836173	.34665131	.25917255	.5482044	15582184	.17105516
Ubide	.2152978	28654674	.2488324	.04590121	.10288754	.35087181	2594761	.05982893
Ugao-Miraballes	.1149135	.38867474	.5126165	.25002343	.32540418	17659188	.07646008	.31743796
Urduliz	.28349843	.37288358	.22312519	.48390081	.23141517	60768611	33609562	.24751092
Urduña/Orduña	.25280339	05139768	.31701922	.27871893	.19049524	04441474	.07084561	.2094415
Urkabustaiz	40868891	36544643	0084408	30426986	.20944158	.40229398	42277764	20811286
Urnieta	-2.2328023	.11611393	.26734187	.38604368	.02967486	.12455721	05679078	.05034283
Urretxu	.2698503	24659863	.34536978	.52658712	.28882434	00010599	.81439113	.33919242
Usurbil	08653739	.32224493	59420823	.17188942	.16282035	.07496046	.4240558	06415791
Valdegovía/Gaubea	-1.9448641	87280558	09425665	55253347	-1.8841414	.56614291	-1.4864104	60355958
Valle de Trápaga-Trapagaran	.2451698	.07529093	03971392	1919799	.28551263	-1.336838	09996893	09795705
Villabona	.39274722	.17893148	.41062637	.21672245	.28998821	.32244252	1.0237896	.37075975
Villabuena de Álava/Eskuernaga	69743155	33939805	36101092	53230855	-1.1082351	19535286	-1.0064359	49187506
Vitoria-Gasteiz	.24093235	46250073	.29599659	56995969	.22571812	98671447	.0121217	15738228
Yécora/lekora	-1.0055485	59274746	.36913482	.19906709	.32540418	11015378	-1.1631191	0955494
Zaldibar	.24216301	.06245785	.40515276	0457667	.32540418	.29164681	0405152	.15745317
Zaldibia	.50092667	00540065	.12300818	05264305	.16542717	.46148225	1.1409656	.1883466
Zalduondo	31539024	92294971	.42103866	01143491	33109231	.27097899	72776324	0828968

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	Water	Air	Energy	Transport	Tourism	Soil use	Waste	TOTAL
Zalla	.24717415	.1311244	03313622	.46255325	.27982517	.27163424	13460797	.16549309
Zambrana	.11775856	61303377	33744212	34081439	.32540418	.269169	45248597	333726
Zamudio	.24243812	.38690284	-3.326052	39525706	.15127933	75779789	87379886	-1.2775941
Zaratamo	.25496937	.39964321	89579223	87356043	.27771184	.24618387	11846107	49263537
Zarautz	.3974897	.25627439	.1855953	.30546478	32615195	79342052	03757922	.19377303
Zeanuri	.24465509	20030572	.06929118	.17413665	66369059	.69111128	15936851	.07484848
Zeberio	.23615667	.39311381	.34703115	.06292453	.07496506	.90496589	.13728191	.2580928
Zegama	.40033608	73438589	.07638992	17019661	.18622387	.79885962	.9209746	.01124636
Zerain	.38884859	31696821	.14790502	2114488	-1.1051077	.66398608	.78473054	.06638559
Zestoa	.17685643	.30216743	.03552158	.32192594	27597864	.36771599	.42951577	.22272916
Zierbena	.25147187	.28131765	-4.2231672	-3.0398539	.12374292	-2.2407505	-2.1421363	-2.5754591
Zigoitia	44626914	49360684	-1.5105392	44291673	.13366534	.34725337	-1.0226766	83894901
Ziortza-Bolibar	.22750599	.15596963	.24975099	.79017425	48102249	.71549819	86509225	.30933433
Zizurkil	.39163016	.21532429	.38017856	.26155899	.28422735	.33997416	.88394617	.36680733
Zuia	56748813	52682018	17388644	27683783	07068049	.56271071	68898513	31173928
Zumaia	.40778412	.36309467	.2013737	.06760259	0297655	93565241	02749783	.13918158
Zumarraga	.41842609	18160375	.29706817	.54902498	.24433054	.18090369	.69790368	.34623506

ANNEX I. Table A1. Local Sustainability Index local average values (2016-2019) for the seven sub-indexes (OLS approach) (continuation)

Municipality	PCA Index Value	Municipality	PCA Index Value	Municipality	PCA Index Value
Abadiño	20971252	Arrankudiaga	.48671012	Belauntza	.32518961
Abaltzisketa	.50545571	Arrasate/Mondragón	13017858	Berango	95867632
Abanto y Ciérvana-Abanto Zierbena	90224584	Arratzu	.57287626	Berantevilla	63266403
Aduna	.34222777	Arratzua-Ubarrundia	46728492	Berastegi	1.0565115
Agurain/Salvatierra	5268426	Arrieta	.62563044	Bergara	.39145657
Aia	.38035852	Arrigorriaga	45075601	Bermeo	.07087301
Aizarnazabal	.02061272	Artea	.4445953	Bernedo	.20648272
Ajangiz	.14622452	Artzentales	.60319023	Berriatua	.50733195
Albiztur	.86954743	Artziniega	.18819552	Berriz	.0822188
Alegia	.23484672	Asparrena	.18325404	Berrobi	.46321527
Alegría Dulantzi	38959375	Asteasu	.42894172	Bidania-Goiatz	.69734034
Alkiza	.74579482	Astigarraga	3489772	Bilbao	-2.5704107
Alonsotegi	.07350184	Ataun	.76935364	Busturia	.53622615
Altzaga	.27679029	Atxondo	.18121927	Campezo/Kanpezu	.38748061
Altzo	.63338677	Aulesti	.80086853	Deba	.11274344
Amezketa	.61544704	Ayala/Aiara	.28723377	Derio	-1.7623724
Amorebieta-Etxano	20153852	Azkoitia	.44502423	Dima	.45540024
Amoroto	.83660123	Azpeitia	.36581901	Donostia / San Sebastián	-2.1428196
Amurrio	.06657412	Añana	.25867085	Durango	-1.1651363
Andoain	14783656	Bakio	06067205	Ea	.60251336
Anoeta	11994212	Baliarrain	.30735184	Eibar	36916783
Antzuola	.78253868	Balmaseda	.33805687	Elantxobe	.4458544
Arakaldo	.27223056	Barakaldo	-1.1789345	Elburgo/Burgelu	26338695
Arama	.06836945	Barrika	67133245	Elciego	35046898
Aramaio	.69372595	Barrundia	.58478981	Elduain	1.2253761
Arantzazu	.14685623	Basauri	-2.5693226	Elgeta	.68880548
Areatza	.56782372	Baños de Ebro/Mañueta	11677192	Elgoibar	.06106673
Aretxabaleta	.26114954	Beasain	.14645521	Elorrio	05862417
Armiñón	34204909	Bedia	.4187875	Elvillar/Bilar	02408931
Arraia-Maeztu	.50201483	Beizama	1.0073478	Erandio	-1.1649588

ANNEX II. Table B1. Local Sustainability Index local average values (2016-2019) (PCA approach)

Municipality	PCA Index Value	Municipality	PCA Index Value	Municipality	PCA Index Value
Ereño	.83638473	Hernialde	.36550885	Laukiz	36536434
Ermua	83820975	Hondarribia	-1.555079	Lazkao	.06297556
Errenteria	16567397	Ibarra	35903468	Leaburu	.20393201
Errezil	1.0337677	Ibarrangelu	.58300485	Legazpi	.72803377
Erriberagoitia/Ribera Alta	.50122509	Idiazabal	.475685	Legorreta	.20894184
Errigoiti	.79454052	lgorre	02145572	Legutio	67110773
Eskoriatza	.51341992	Ikaztegieta	23855134	Leintz-Gatzaga	.98012606
Etxebarri	-1.5343851	Irun	56700532	Leioa	-2.8033795
Etxebarria	.47667582	Irura	31359141	Lekeitio	-2.0206449
Ezkio-Itsaso	.62074807	Iruraiz-Gauna	.21414595	Lemoa	16352611
Forua	.3039881	Iruña Oka/Iruña de Oca	04452669	Lemoiz	.23431071
Fruiz	.17261276	lspaster	.70107964	Leza	10953646
Gabiria	.62539673	Itsasondo	.61487723	Lezama	08126925
Gaintza	.59881299	lurreta	38223917	Lezo	59709017
Galdakao	53724585	Izurtza	10547617	Lizartza	.81474429
Galdames	.92197416	Karrantza Harana/Valle de Carranza	.25837786	Loiu	-1.295837
Gamiz-Fika	.27522799	Kortezubi	.52898524	Mallabia	.04616376
Garai	.20304973	Kripan	.26490665	Markina-Xemein	.51540357
Gatika	.12011312	Kuartango	2.7857553	Maruri-Jatabe	.47143675
Gautegiz Arteaga	.35484625	Labastida/Bastida	03073192	Mañaria	.44455217
Gaztelu	.93063895	Lagrán	.82517353	Mendaro	.43594351
Gernika-Lumo	69697045	Laguardia	12569046	Mendata	.84262346
Getaria	57713628	Lanciego/Lantziego	12673083	Mendexa	.24523006
Getxo	-2.9113213	Lanestosa	53715559	Meñaka	.34365907
Gizaburuaga	.66590002	Lantarón	.04535043	Moreda de lava/Moreda Araba	16568206
Gordexola	.65145356	Lapuebla de Labarca	58681352	Morga	.69988772
Gorliz	68254469	Larrabetzu	.21402706	Mundaka	31278486
Güeñes	.21842201	Larraul	.75353151	Mungia	43156239
Harana/Valle de Arana	.72659291	Lasarte-Oria	-1.2307971	Munitibar-Arbatzegi Gerrikaitz	.95937395
Hernani	.31257508	Laudio/Llodio	13494068	Murueta	.02650853

ANNEX II. Table B1. Local Sustainability Index local average values (2016-2019) (PCA approach) (continuation)

Municipality	PCA Index Value	Municipality	PCA Index Value	Municipality	PCA Index Value
Muskiz	53147062	Sondika	-1.2618402	Zeberio	.70164935
Mutiloa	.35096714	Sopela	-1.4290622	Zegama	.74968324
Mutriku	.25114177	Sopuerta	.6217954	Zerain	.60821126
Muxika	.69630954	Soraluze-Placencia de las Armas	.25623574	Zestoa	.31207403
Nabarniz	.76818772	Sukarrieta	10088699	Zierbena	-2.1129944
Navaridas	12027664	Tolosa	.03708481	Zigoitia	01333456
Oiartzun	.08285323	Trucios-Turtzioz	.72957429	Ziortza-Bolibar	.38647816
Okondo	.48496725	Ubide	.27749348	Zizurkil	.3144349
Olaberria	20105835	Ugao-Miraballes	30005299	Zuia	.31299618
Ondarroa	61777788	Urduliz	57513812	Zumaia	92248991
Ordizia	85683101	Urduña/Orduña	14459176	Zumarraga	.14927204
Orendain	.55409671	Urkabustaiz	.29837001		
Orexa	.9341395	Urnieta	.01216309		
Orio	27227302	Urretxu	.13693716		
Ormaiztegi	.25254256	Usurbil	02565536		
Orozko	.52561555	Valdegovía/Gaubea	.40946307		
Ortuella	-1.6399788	Valle de Trápaga-Trapagaran	-1.3256586		
Otxandio	.12027811	Villabona	.14617715		
Oyón-Oion	3129325	Villabuena de Álava/Eskuernaga	07660402		
Oñati	.77787226	Vitoria-Gasteiz	-1.1373658		
Pasaia	61163317	Yécora/lekora	05281282		
Peñacerrada-Urizaharra	.42805267	Zaldibar	16628793		
Plentzia	65109088	Zaldibia	.38266106		
Portugalete	-3.3818573	Zalduondo	.31182519		
Ribera Baja/Erriberabeitia	87910204	Zalla	.18306327		
Samaniego	09568118	Zambrana	.12456977		
San Millán/Donemiliaga	.50827378	Zamudio	75020733		
Santurtzi	-2.4340041	Zaratamo	.30916381		
Segura	.36569071	Zarautz	92571013		
Sestao	-3.417837	Zeanuri	.53483235		

ANNEX II. Table B1. Local Sustainability Index local average values (2016-2019) (PCA approach) (continuation)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Araba	480.12303	484.63492	497.28814	498.75577	502.40072	495.09656	496.91904
	(100.3309)	(97.62045)	(94.0392)	(97.45668)	(95.54589)	(95.26035)	(94.3181)
Bizkaia	803.27798	798.97153	828.83581	820.17195	836.69862	819.21389	827.47723
	(234.7061)	(223.799)	(233.641)	(226.0549)	(231.2372)	(224.8647)	(227.4185)
Gipuzkoa	749.70926	746.1329	755.8285	762.10591	766.45773	760.35303	762.52894
	(178.8401)	(170.6184)	(173.4733)	(172.5338)	(173.7943)	(171.2002)	(171.8243)
Abadiño	652.40737	655.06813	685.43705	675.65106	695.45893	675.47587	685.37981
	(51.34663)	(50.95455)	(56.54241)	(36.34254)	(40.77964)	(36.54659)	(38.71484)
Abaltzisketa	869.29259	859.80782	872.74141	873.87118	878.77424	866.34677	868.7983
	(65.42793)	(65.30645)	(65.8069)	(71.98237)	(72.74754)	(71.58948)	(71.97195)
Abanto y Ciérvana-Abanto	637.85078	641.97027	658.25115	658.64057	666.57714	659.06617	663.03445
Zierbena	(41.26497)	(41.84846)	(43.24945)	(31.71346)	(31.6664)	(31.6673)	(31.63652)
Aduna	791.30547	774.46697	796.85204	798.81061	808.87272	801.07783	806.10888
	(75.48389)	(74.32749)	(75.9155)	(80.9597)	(82.97916)	(81.03748)	(82.04749)
Agurain/Salvatierra	580.60699	580.08158	586.11189	604.8317	606.43667	602.96696	603.76944
	(68.57514)	(66.53531)	(65.5858)	(56.65631)	(56.25317)	(57.05439)	(56.83969)
Aia	655.97887	656.21774	668.69142	671.42365	676.82335	671.98124	674.68109
	(65.47092)	(65.2537)	(65.81876)	(69.695)	(69.8917)	(70.5399)	(70.6428)
Aizarnazabal	706.2102	706.21492	712.31031	721.29706	721.44684	720.01372	720.08861
	(61.04018)	(61.69478)	(60.70441)	(66.31119)	(65.39896)	(65.57114)	(65.1195)
Ajangiz	859.24052	854.17527	888.45414	869.78907	887.90209	871.86823	880.92474
	(50.071)	(49.64277)	(52.64009)	(42.03114)	(45.6703)	(42.63163)	(44.37408)
Albiztur	896.28895	883.76806	902.52377	910.84394	921.90919	903.85689	909.38951
	(101.6361)	(99.32001)	(101.0569)	(103.4822)	(102.2386)	(102.0282)	(101.4004)
Alegia	659.62509	662.34016	670.53653	676.24053	679.90989	674.96404	676.79872
	(62.5596)	(62.91477)	(63.42909)	(68.16716)	(69.2506)	(68.14101)	(68.68252)
Alegría-Dulantzi	530.21814	534.5918	539.75305	548.94072	547.99605	547.5912	547.11887
	(37.61264)	(37.68512)	(35.39253)	(30.81145)	(28.73084)	(31.12035)	(30.03373)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Alkiza	844.63641	836.77367	852.07535	842.86431	849.99556	834.21387	837.77949
	(59.49522)	(59.55806)	(60.73277)	(71.6736)	(71.3064)	(70.77573)	(70.57831)
Alonsotegi	678.8219	679.98994	716.01529	700.21161	724.8227	699.82054	712.12608
	(53.37923)	(52.73468)	(60.27598)	(42.41375)	(46.68193)	(41.78194)	(43.68343)
Altzaga	1107.0374	1088.0739	1095.9737	1103.6775	1102.4274	1094.1083	1093.4833
	(42.90453)	(44.61123)	(43.08546)	(44.71306)	(39.75454)	(42.45312)	(39.9583)
Altzo	776.20008	771.89862	785.798	778.27815	785.77291	779.51758	783.26495
	(64.19948)	(64.17918)	(65.48067)	(77.46393)	(78.88342)	(77.18847)	(77.8989)
Amezketa	694.2291	692.38143	707.65502	705.47562	710.57727	704.56615	707.11697
	(59.82909)	(60.15725)	(60.40095)	(67.63974)	(68.9199)	(67.55338)	(68.18844)
Amorebieta-Etxano	601.77653	608.32326	637.51301	625.68827	644.68914	625.90557	635.40601
	(43.27208)	(43.73605)	(49.1657)	(31.80044)	(36.30275)	(31.63979)	(33.81978)
Amoroto	1108.0913	1090.4821	1138.1	1120.3754	1146.4028	1120.1811	1133.1947
	(78.24609)	(77.00034)	(81.94837)	(55.85676)	(57.57591)	(55.50916)	(56.364)
Amurrio	555.64473	561.58905	568.95079	575.75419	578.27733	573.87916	575.14073
	(37.73339)	(37.59275)	(36.88381)	(24.52789)	(23.73685)	(24.8502)	(24.45386)
Andoain	656.12194	658.79389	662.92915	674.0404	676.42596	672.00688	673.19966
	(60.25937)	(60.97855)	(61.50776)	(64.63363)	(64.67606)	(64.30672)	(64.32642)
Anoeta	630.92454	632.0047	639.19096	648.24165	655.22883	649.54246	653.03605
	(75.18813)	(72.44173)	(73.72274)	(66.49058)	(71.49405)	(69.6913)	(72.34953)
Antzuola	662.55946	666.62698	679.49723	680.84351	687.36707	678.24092	681.5027
	(60.24841)	(60.53107)	(61.62722)	(62.479)	(63.6552)	(62.26691)	(62.85546)
Arakaldo	1458.8017	1423.3084	1460.618	1451.7033	1473.5522	1450.7255	1461.65
	(78.48232)	(77.16093)	(82.17876)	(64.51579)	(63.74459)	(63.28278)	(62.90045)
Arama	1025.0729	1003.8452	1015.7071	1021.8077	1024.3933	1023.0388	1024.3316
	(95.91274)	(93.73071)	(92.9082)	(109.2162)	(106.2898)	(108.4768)	(106.9902)
Aramaio	558.03462	565.82531	578.14831	578.40689	583.85644	575.38551	578.11028
	(41.58734)	(41.44861)	(41.05775)	(34.00182)	(33.96481)	(34.27334)	(34.25495)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Arantzazu	874.52051	869.70379	903.15842	879.09799	898.5855	876.95645	886.7002
	(59.55397)	(58.819)	(63.38025)	(66.17242)	(70.60368)	(66.49309)	(68.70203)
Areatza	769.43913	769.70893	811.40934	787.92016	814.50512	785.17831	798.47079
	(49.02932)	(48.5979)	(55.5694)	(29.62683)	(35.48315)	(29.96433)	(32.82949)
Aretxabaleta	651.32233	654.89169	662.96036	667.38973	671.77799	665.67758	667.87172
	(56.61764)	(57.12459)	(58.03771)	(61.0062)	(62.40431)	(61.05853)	(61.75568)
Armiñón	406.59645	414.81199	422.83944	426.04951	427.24666	426.33223	426.9308
	(32.28772)	(31.97404)	(30.75381)	(31.12083)	(29.67701)	(31.49511)	(30.77429)
Arraia-Maeztu	348.30115	358.1161	376.78004	371.47598	377.05075	363.94034	366.72773
	(24.48791)	(25.28373)	(23.35158)	(18.64914)	(13.01853)	(17.77915)	(14.91984)
Arrankudiaga	821.82925	815.49191	859.68994	840.89448	867.36549	841.09111	854.32661
	(55.01563)	(54.71236)	(61.59895)	(34.3961)	(40.12479)	(33.27411)	(36.10691)
Arrasate/Mondragón	656.9578	659.23888	663.87891	673.37622	675.15046	671.19169	672.07881
	(58.266)	(58.57896)	(58.89407)	(60.81878)	(62.39089)	(61.27219)	(62.05664)
Arratzu	994.64165	983.59031	1025.261	1004.6796	1026.1399	1004.0363	1014.7664
	(48.51381)	(48.70982)	(52.23801)	(21.72324)	(24.7392)	(21.91913)	(23.43236)
Arratzua-Ubarrundia	451.69022	447.61309	464.30141	466.14658	472.76563	469.18023	472.48976
	(29.64373)	(29.6155)	(29.49051)	(24.14419)	(22.80961)	(24.02658)	(23.36322)
Arrieta	878.1904	871.20361	915.63106	888.44325	910.28616	878.69847	889.61992
	(39.56993)	(40.18538)	(43.91003)	(24.98079)	(27.07267)	(24.82)	(25.87775)
Arrigorriaga	634.08385	640.99394	663.52103	656.74379	673.80304	655.82684	664.35646
	(43.21008)	(43.48137)	(49.48655)	(32.32296)	(37.06283)	(31.88512)	(34.0293)
Artea	869.46816	861.86377	904.03624	883.67805	909.81334	883.94897	897.01662
	(56.1382)	(55.13823)	(61.37761)	(34.20485)	(39.82352)	(35.14775)	(37.93085)
Artzentales	991.20566	975.35659	1022.5736	1008.8207	1032.2559	999.51612	1011.2337
	(83.17259)	(82.04135)	(85.63789)	(65.05939)	(62.76379)	(64.22868)	(63.07538)
Artziniega	540.21734	547.72429	555.63056	563.10492	563.62263	559.60394	559.86279
	(39.35424)	(39.64694)	(37.6585)	(25.31374)	(23.96578)	(25.5589)	(24.87032)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Asparrena	535.90734	536.09757	551.48641	555.76297	559.00974	554.63555	556.25893
	(38.93311)	(39.50245)	(37.55322)	(25.97211)	(26.03823)	(27.51022)	(27.52929)
Asteasu	655.84292	657.42032	669.0681	670.18306	672.76065	669.66894	670.95774
	(43.05329)	(44.66769)	(44.00808)	(45.86388)	(44.08265)	(46.11743)	(45.20705)
Astigarraga	611.44231	614.07884	618.12405	627.1655	628.05661	625.50216	625.94771
	(54.87336)	(55.06478)	(54.71669)	(58.7382)	(58.59602)	(58.89101)	(58.81173)
Ataun	649.85152	652.03065	667.27317	667.07195	674.28793	666.75887	670.36686
	(63.44374)	(63.75267)	(64.60861)	(70.51386)	(69.31313)	(69.30211)	(68.70313)
Atxondo	729.79821	727.35129	766.45351	748.27138	773.82866	749.1275	761.90613
	(54.13714)	(53.43208)	(60.76107)	(41.5216)	(48.26849)	(42.01384)	(45.31558)
Aulesti	999.89193	987.52628	1034.6499	1011.6672	1036.9854	1012.8238	1025.4829
	(65.61992)	(64.99871)	(70.13411)	(52.29362)	(55.01386)	(51.97503)	(53.33786)
Ayala/Aiara	372.94624	386.25386	397.81646	398.0614	400.44033	396.30978	397.49924
	(27.99849)	(28.70049)	(27.0167)	(18.66273)	(18.67431)	(19.49045)	(19.49043)
Azkoitia	655.38729	658.77427	668.89675	673.65685	678.76457	673.68431	676.23817
	(58.78662)	(59.25882)	(60.26199)	(60.89828)	(62.67583)	(61.05009)	(61.93464)
Azpeitia	652.51716	655.39789	665.28175	670.14005	674.66859	669.74865	672.01292
	(56.12562)	(57.02417)	(57.75554)	(59.97491)	(60.66245)	(59.60714)	(59.94765)
Añana	654.19258	650.58767	664.69121	669.77466	674.93552	661.38771	663.96814
	(44.56408)	(43.82542)	(42.56646)	(28.42599)	(24.87717)	(28.46961)	(26.68798)
Bakio	704.41114	705.41948	737.4948	720.97688	737.11792	719.3606	727.43112
	(40.80486)	(41.52984)	(44.29136)	(32.88893)	(34.73923)	(33.30177)	(34.23272)
Baliarrain	1254.3717	1224.5308	1236.3145	1271.3942	1275.1662	1262.9315	1264.8174
	(132.7368)	(128.9637)	(129.1013)	(110.6161)	(111.2648)	(110.4277)	(110.7607)
Balmaseda	659.42165	665.56404	702.4069	680.78675	700.41234	678.89227	688.70506
	(39.42486)	(39.92619)	(44.57379)	(30.11709)	(33.30551)	(29.32836)	(31.14883)
Barakaldo	609.88041	618.80722	626.49871	635.07339	640.44881	633.54772	636.23543
	(44.21852)	(44.95549)	(46.73169)	(34.62887)	(36.78104)	(34.25528)	(35.33267)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Barrika	657.60304	661.20992	681.33608	675.04335	684.56946	675.36343	680.12649
	(35.87541)	(36.44518)	(37.51608)	(25.88296)	(26.27215)	(26.47993)	(26.64045)
Barrundia	336.9978	351.08358	366.95022	360.46348	366.07655	359.97183	362.77837
	(22.74431)	(23.31048)	(22.0394)	(17.98744)	(13.12525)	(16.61746)	(14.2789)
Basauri	624.46693	628.30846	613.71966	643.46297	636.97854	645.19877	641.95656
	(45.5233)	(44.06863)	(42.94466)	(36.24636)	(33.46346)	(35.5462)	(34.29668)
Baños de Ebro/Mañueta	524.9807	528.65126	537.78711	546.09744	547.43222	537.64031	538.3077
	(48.52194)	(48.0048)	(46.01984)	(41.09846)	(38.98262)	(41.23552)	(40.20892)
Beasain	652.68559	654.90775	662.98466	671.38931	676.19348	670.26935	672.67143
	(59.21951)	(59.72098)	(60.79333)	(61.07504)	(61.67045)	(60.75569)	(61.04826)
Bedia	727.60471	725.87904	768.88486	739.22353	765.28926	738.74632	751.77919
	(33.52227)	(34.41024)	(41.53854)	(29.56879)	(39.15315)	(29.56581)	(34.28888)
Beizama	1238.4586	1210.4727	1229.1755	1250.551	1262.7625	1251.0493	1257.155
	(165.1719)	(159.1788)	(162.117)	(165.3888)	(168.2442)	(165.9671)	(167.3915)
Belauntza	970.99537	952.96748	967.31214	962.60623	968.1082	962.24888	964.99986
	(66.09672)	(65.46744)	(66.0241)	(77.36522)	(78.10811)	(77.7332)	(78.10236)
Berango	612.81301	620.28369	633.43933	634.68912	643.12978	636.36969	640.59003
	(40.12607)	(40.62321)	(42.70859)	(30.01251)	(33.29218)	(30.47192)	(32.11084)
Berantevilla	384.76502	371.82482	398.84988	387.82589	397.1167	395.28313	399.92853
	(17.06704)	(16.02148)	(14.5083)	(22.73982)	(16.67661)	(18.13455)	(15.20212)
Berastegi	665.8221	667.97971	685.68009	684.00684	692.53928	683.42954	687.69576
	(67.13522)	(67.17003)	(68.32004)	(71.01904)	(71.40641)	(71.11353)	(71.30733)
Bergara	659.23115	661.70876	671.95243	675.71233	681.41373	674.73432	677.58502
	(59.53336)	(59.82321)	(61.06889)	(63.15387)	(65.30292)	(63.23432)	(64.30231)
Bermeo	607.08662	616.37994	647.64356	633.67661	650.9705	631.21394	639.86089
	(45.51863)	(46.4223)	(50.45508)	(34.50388)	(37.51686)	(34.29203)	(35.78431)
Bernedo	355.64537	356.52832	380.49997	371.60152	379.4496	365.08125	369.00529
	(20.3301)	(21.23835)	(19.73349)	(16.81063)	(17.47984)	(18.34301)	(18.58761)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Berriatua	761.88851	760.63515	802.99035	777.0442	799.67018	776.43367	787.74666
	(46.40307)	(47.19471)	(51.82096)	(43.70034)	(45.78629)	(42.83271)	(43.87718)
Berriz	665.83034	670.48895	703.69814	686.91102	707.53518	686.55426	696.86634
	(44.04491)	(44.08596)	(49.4814)	(31.42683)	(35.20282)	(31.28884)	(33.15934)
Berrobi	734.2141	735.58399	743.95391	746.92925	749.68871	743.52702	744.90675
	(48.25745)	(49.89948)	(49.75748)	(53.0512)	(52.41972)	(52.23757)	(51.92645)
Bidania-Goiatz	778.72645	773.9387	788.84614	788.0567	794.27034	779.80637	782.91319
	(53.61732)	(53.90429)	(54.4129)	(54.81567)	(54.26991)	(54.51807)	(54.24164)
Bilbao	912.6795	901.91004	887.58051	926.65759	919.85245	927.80955	924.40698
	(63.95481)	(62.73843)	(61.56448)	(46.42912)	(45.74985)	(46.62461)	(46.28903)
Busturia	711.87379	716.06772	755.94504	734.34844	754.66337	732.17904	742.3365
	(55.26819)	(55.35941)	(59.1444)	(46.33837)	(48.60408)	(46.27697)	(47.40478)
Campezo/Kanpezu	415.33498	423.02842	439.20287	440.99009	442.76964	437.62512	438.51489
	(29.0187)	(31.19345)	(28.26956)	(18.14991)	(15.35586)	(19.20992)	(17.88517)
Deba	662.38139	662.55562	671.75349	679.25704	682.99981	678.46169	680.33308
	(65.29802)	(65.16688)	(65.50714)	(68.04237)	(68.09308)	(68.61704)	(68.64246)
Derio	614.69128	614.08967	619.93183	632.77473	637.0112	632.73768	634.85592
	(44.76086)	(44.20336)	(45.64453)	(36.9124)	(38.47338)	(37.43107)	(38.25317)
Dima	815.81898	811.8624	853.29463	838.8956	863.94874	841.13694	853.6635
	(72.72013)	(71.20152)	(77.52782)	(52.2616)	(58.50184)	(53.11917)	(56.22733)
Donostia / San Sebastián	705.19981	700.26226	686.95732	716.41482	708.69328	718.49222	714.63145
	(62.9668)	(62.37974)	(60.73357)	(67.22803)	(65.06979)	(67.42292)	(66.34086)
Durango	593.60893	602.11372	611.40594	616.12128	625.94104	615.36156	620.27144
	(42.54742)	(42.5901)	(46.57135)	(31.58062)	(36.66681)	(32.47886)	(34.9015)
Ea	817.85043	815.04983	857.86184	833.55238	853.1041	832.34962	842.12548
	(48.54064)	(49.57614)	(52.45829)	(38.896)	(42.15431)	(40.56194)	(42.17831)
Eibar	657.40229	659.64209	661.64575	673.42678	675.18039	672.00562	672.88243
	(59.79203)	(60.0869)	(60.79108)	(64.65216)	(66.05451)	(64.36137)	(65.04982)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Elantxobe	885.35727	880.57006	918.96284	902.41734	921.14422	897.54942	906.91286
	(58.87616)	(58.36639)	(61.24663)	(40.3371)	(40.00071)	(40.24097)	(40.07427)
Elburgo/Burgelu	348.90355	360.51933	368.90028	371.3441	373.87906	370.57865	371.84613
	(22.75083)	(23.75085)	(23.11223)	(20.13607)	(19.08324)	(18.62307)	(18.2516)
Elciego	566.23877	568.72404	574.40463	577.13605	576.85292	568.21257	568.071
	(31.26901)	(31.5832)	(29.65667)	(32.69884)	(32.95583)	(32.65868)	(32.76365)
Elduain	940.61039	925.36903	948.6647	943.79877	956.4923	944.78874	951.13551
	(63.08841)	(62.4331)	(64.75251)	(62.68201)	(65.32072)	(63.2033)	(64.52404)
Elgeta	651.72812	654.02989	668.18723	665.41379	673.48776	655.92913	659.96611
	(57.52411)	(57.77492)	(59.53832)	(63.7693)	(66.36107)	(63.20838)	(64.49636)
Elgoibar	656.29837	658.05167	665.42861	674.01482	677.64906	672.85577	674.67289
	(59.80132)	(60.13034)	(60.82915)	(61.70168)	(62.71276)	(61.6764)	(62.17463)
Elorrio	628.01024	631.90026	665.18247	651.14576	673.43768	653.21366	664.35962
	(47.3563)	(47.01352)	(53.66995)	(32.59657)	(38.76791)	(33.04726)	(36.09921)
Elvillar/Bilar	527.31846	532.41758	541.03125	549.15257	550.91008	540.55932	541.43807
	(46.80819)	(46.19179)	(44.55962)	(35.68102)	(35.04123)	(36.1254)	(35.835)
Erandio	621.3099	625.86047	637.48276	643.42092	648.89583	645.52366	648.26112
	(42.75856)	(42.75185)	(43.41509)	(27.67592)	(28.05334)	(28.20664)	(28.40152)
Ereño	1574.9894	1533.2344	1581.5516	1581.1309	1604.9611	1571.3346	1583.2496
	(119.715)	(116.2304)	(119.8348)	(77.60384)	(79.32904)	(77.50164)	(78.3553)
Ermua	669.02951	673.80541	689.07762	689.30982	697.01867	689.16572	693.02015
	(43.71577)	(43.98711)	(45.48276)	(33.58797)	(37.4975)	(34.3382)	(36.30236)
Errenteria	657.74134	661.50161	664.31547	675.90919	679.35084	673.93421	675.65504
	(61.22761)	(61.90665)	(63.21485)	(66.11288)	(68.07806)	(65.54292)	(66.50889)
Errezil	760.37845	758.66473	775.22084	776.28837	783.73357	768.76573	772.48832
	(62.53)	(62.82122)	(63.36897)	(61.7017)	(59.5374)	(60.54573)	(59.46614)
Erriberagoitia/Ribera Alta	353.96696	365.11556	382.14838	371.3107	376.00388	371.12487	373.47146
	(12.41024)	(13.58247)	(12.0745)	(12.03821)	(13.11561)	(12.02179)	(12.50249)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Errigoiti	1014.6209	1003.638	1048.4971	1036.1264	1059.5079	1025.9087	1037.5994
	(88.61998)	(87.07901)	(91.67683)	(65.90152)	(68.53171)	(65.68153)	(66.99964)
Eskoriatza	658.00731	659.81331	672.14778	675.04549	680.60345	674.03292	676.81189
	(60.89262)	(61.01702)	(62.15215)	(61.28799)	(65.967)	(63.03099)	(65.36483)
Etxebarri	619.76301	627.85141	628.95951	642.97369	643.32377	641.29424	641.46928
	(45.37877)	(45.37649)	(44.89915)	(34.26839)	(32.87566)	(34.08005)	(33.37498)
Etxebarria	868.9474	862.57795	904.16829	886.46723	907.68528	884.99122	895.60025
	(43.65606)	(44.79865)	(48.68657)	(10.72468)	(16.29616)	(12.06822)	(14.85166)
Ezkio-Itsaso	871.41987	856.92019	876.09604	918.89365	926.61933	918.77945	922.64229
	(141.0642)	(136.6981)	(137.5)	(90.88297)	(91.23342)	(89.66077)	(89.83927)
Forua	704.97205	708.24241	744.90021	726.45325	742.33919	725.7788	733.72177
	(50.65615)	(51.15344)	(53.29594)	(40.69975)	(45.35787)	(41.9206)	(44.2452)
Fruiz	809.07642	806.39722	841.33476	822.79943	839.27866	812.14239	820.38201
	(44.31726)	(44.94004)	(47.63861)	(35.5328)	(39.7238)	(36.02578)	(38.13403)
Gabiria	769.59612	763.57272	779.37749	775.53372	782.66562	776.86292	780.42887
	(63.14159)	(62.85539)	(63.71987)	(72.14588)	(72.85209)	(71.9581)	(72.3101)
Gaintza	1300.9811	1270.5748	1283.8387	1276.8783	1279.6513	1266.9057	1268.2922
	(80.15469)	(79.33919)	(79.05518)	(96.40384)	(97.3577)	(95.18249)	(95.63982)
Galdakao	620.60762	627.57363	649.06773	645.56	661.61306	643.86957	651.8961
	(47.97563)	(48.40905)	(53.78949)	(38.62363)	(42.10043)	(37.45575)	(39.08178)
Galdames	930.22107	922.00257	970.76525	942.05153	968.10132	942.70079	955.72568
	(49.32257)	(49.70833)	(54.88524)	(32.35268)	(32.96708)	(32.48606)	(32.79244)
Gamiz-Fika	653.56135	660.58285	695.58841	680.13349	697.93698	678.69296	687.5947
	(52.64924)	(52.97961)	(56.26367)	(38.30291)	(41.82502)	(38.95986)	(40.71373)
Garai	1087.6407	1064.4507	1106.7002	1085.4545	1105.8135	1076.2397	1086.4192
	(31.01436)	(32.51465)	(36.16587)	(5.555457)	(17.24317)	(7.463268)	(13.53002)
Gatika	699.46145	703.20944	736.22181	725.13176	741.60464	724.48338	732.71983
	(62.52228)	(62.21443)	(65.0387)	(51.44377)	(52.82394)	(51.23606)	(51.926)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Gautegiz Arteaga	792.78145	788.91807	829.29541	809.68377	829.84563	808.5976	818.67854
	(51.22784)	(50.90932)	(54.10875)	(34.80495)	(35.70684)	(34.80408)	(35.25375)
Gaztelu	1210.4054	1185.5841	1201.611	1200.3146	1211.5392	1200.0865	1205.6988
	(114.8325)	(111.9841)	(113.3272)	(131.3713)	(129.1119)	(130.6062)	(129.4728)
Gernika-Lumo	616.72389	624.62363	642.07429	641.71012	650.88256	640.77712	645.36334
	(48.79612)	(48.86723)	(50.59593)	(37.80186)	(38.45363)	(38.03247)	(38.36066)
Getaria	650.87227	648.11877	653.03893	670.67035	671.28409	668.8303	669.13717
	(66.62017)	(66.69534)	(66.15437)	(64.9879)	(64.71732)	(65.32084)	(65.22375)
Getxo	610.46222	616.47104	593.96694	632.53485	621.43397	634.83193	629.28149
	(44.91244)	(44.73315)	(42.57035)	(33.18161)	(32.86869)	(33.90245)	(33.74181)
Gizaburuaga	1491.2976	1452.3447	1498.9613	1478.9814	1504.8831	1476.9619	1489.9127
	(67.46029)	(66.72621)	(72.22155)	(52.66223)	(54.52551)	(51.73162)	(52.66223)
Gordexola	735.76516	734.89599	780.92068	753.95301	778.49616	753.94113	766.21271
	(39.33456)	(40.19381)	(45.09827)	(19.18674)	(23.18517)	(19.93286)	(21.91832)
Gorliz	664.23949	668.71393	687.55182	686.27785	696.92743	683.44101	688.7658
	(44.94062)	(45.29754)	(47.83421)	(31.15594)	(32.77516)	(31.62798)	(32.42845)
Güeñes	632.11314	639.5299	674.18539	658.46071	676.77244	658.27018	667.42605
	(47.37548)	(48.01706)	(51.8736)	(31.27944)	(35.13887)	(32.17664)	(34.10226)
Harana/Valle de Arana	435.27915	442.55687	461.88934	456.94608	462.60611	448.26392	451.09394
	(29.63202)	(30.48979)	(28.37128)	(20.4403)	(19.35822)	(20.86547)	(20.25014)
Hernani	644.29291	647.84418	656.88423	659.49469	665.05297	659.96152	662.74066
	(56.51262)	(57.18008)	(58.32316)	(63.73378)	(63.97734)	(63.20227)	(63.32045)
Hernialde	912.92273	899.94635	912.70326	911.40896	920.22038	911.2052	915.61091
	(65.52641)	(65.16457)	(67.25169)	(74.61364)	(77.12148)	(74.70243)	(75.95121)
Hondarribia	656.55341	650.16507	647.86398	677.3867	684.59019	675.61122	679.21296
	(64.40942)	(66.2282)	(71.15486)	(77.50826)	(82.84995)	(72.84939)	(75.68106)
Ibarra	665.17734	667.78191	669.02936	681.79457	680.65222	680.33454	679.76336
	(57.76171)	(57.95507)	(56.9341)	(60.55955)	(57.77988)	(59.84813)	(58.44582)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Ibarrangelu	1101.2908	1082.4043	1126.7265	1129.5104	1152.4449	1128.0088	1139.4761
	(115.896)	(112.4086)	(116.0916)	(73.23409)	(72.76261)	(72.50479)	(72.25465)
Idiazabal	650.95569	651.44522	664.99201	666.2162	671.43047	666.01957	668.62671
	(56.22083)	(56.76477)	(57.20013)	(60.85548)	(61.87555)	(60.60782)	(61.1212)
lgorre	670.49755	675.50631	706.14308	690.83376	708.90218	690.56819	699.6024
	(43.10176)	(43.7104)	(48.24107)	(35.51492)	(38.11029)	(35.20436)	(36.47783)
Ikaztegieta	764.72332	760.64407	764.99728	782.17925	781.81555	781.38231	781.20046
	(59.98433)	(60.47052)	(59.65193)	(53.63483)	(52.91633)	(53.71797)	(53.3553)
Irun	656.35034	657.16096	658.28168	668.22689	669.71142	670.73276	671.47503
	(58.90617)	(57.44632)	(57.61091)	(60.58957)	(61.0296)	(61.6557)	(61.86933)
Irura	624.69816	628.92293	631.09197	645.17422	644.29209	643.1048	642.66373
	(73.53329)	(72.9017)	(72.07382)	(77.71453)	(77.68309)	(77.82211)	(77.79563)
Iruraiz-Gauna	337.18783	350.29459	363.03976	360.44906	364.44381	359.82157	361.81894
	(27.46968)	(27.85224)	(26.34355)	(25.85844)	(21.77231)	(24.90619)	(22.89518)
Iruña Oka/Iruña de Oca	381.90534	389.73675	402.66714	404.78501	409.6428	405.20913	407.63803
	(27.97771)	(28.01777)	(27.64486)	(13.32779)	(12.65783)	(13.20751)	(12.87469)
Ispaster	909.23731	902.69541	946.6222	923.89496	946.68296	922.46532	933.85932
	(47.23848)	(47.93097)	(51.92549)	(24.04579)	(25.82264)	(23.72858)	(24.61179)
Itsasondo	717.78215	716.92908	730.10233	732.86456	739.66022	731.60363	735.00145
	(51.39439)	(52.22231)	(53.42675)	(53.40155)	(53.01951)	(51.61837)	(51.42629)
lurreta	665.68324	662.69239	694.73519	685.3954	704.8343	687.28115	697.0006
	(47.56968)	(47.30539)	(52.1702)	(33.1734)	(36.2957)	(32.93708)	(34.48332)
Izurtza	1189.1666	1152.8022	1197.3625	1168.5406	1193.1084	1172.4891	1184.773
	(31.92198)	(29.63101)	(28.85516)	(30.66912)	(27.76831)	(31.4701)	(30.00591)
Karrantza Harana/Valle de	733.62559	729.6325	771.39538	752.73415	772.95991	752.13628	762.24916
Carranza	(44.72166)	(45.92123)	(49.64201)	(27.01515)	(30.81205)	(29.43015)	(31.32847)
Kortezubi	992.28874	980.48183	1022.1784	1004.2275	1025.7767	1007.4898	1018.2644
	(60.15112)	(59.62492)	(63.43586)	(38.68877)	(41.24238)	(39.49781)	(40.77325)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Kripan	594.29839	596.61756	607.85305	612.45251	615.5879	604.2261	605.7938
	(41.29282)	(40.34504)	(38.68134)	(22.4402)	(20.93944)	(23.67042)	(22.91613)
Kuartango	414.03566	430.76052	464.44237	438.39415	450.89753	435.83142	442.08311
	(23.47985)	(25.00553)	(22.8801)	(19.77734)	(16.44795)	(19.10751)	(17.38292)
Labastida/Bastida	604.99261	605.54008	614.75204	623.29507	625.06186	615.16543	616.04882
	(41.91031)	(41.88103)	(40.41434)	(29.26304)	(26.781)	(28.97338)	(27.74367)
Lagrán	446.72672	451.53789	473.86403	467.87048	478.20686	467.64533	472.81352
	(35.21816)	(34.99644)	(34.03687)	(22.22615)	(18.28213)	(22.77051)	(20.75795)
Laguardia	571.37923	566.6808	581.76535	584.73271	587.41848	578.06984	579.41273
	(33.72381)	(34.13227)	(32.01677)	(25.81859)	(24.98186)	(25.95121)	(25.57458)
Lanciego/Lantziego	479.85143	488.37789	494.80633	502.10907	501.63927	493.08599	492.8511
	(30.53577)	(31.21044)	(29.24349)	(19.42898)	(14.95402)	(18.46989)	(16.23697)
Lanestosa	990.24688	975.73647	999.92891	1006.9969	1015.3457	1004.7618	1008.9362
	(75.76026)	(75.30709)	(76.02787)	(55.1114)	(62.47799)	(58.15134)	(61.85023)
Lantarón	354.04795	366.04903	377.19539	377.57359	380.31551	377.03806	378.40902
	(27.61824)	(27.87405)	(26.38628)	(20.3301)	(21.41707)	(21.6412)	(22.15928)
Lapuebla de Labarca	482.08509	489.67623	491.84492	503.08868	498.21944	492.88019	490.44557
	(29.23722)	(30.7906)	(27.46509)	(24.14977)	(21.02576)	(23.71405)	(22.18036)
Larrabetzu	714.1736	714.84132	752.06575	735.78843	756.88627	734.49945	745.04837
	(51.11936)	(50.78907)	(55.48413)	(32.02792)	(34.78795)	(32.6468)	(34.03656)
Larraul	945.41812	933.9953	947.85666	938.30785	943.59293	933.52093	936.16347
	(58.3364)	(58.78767)	(59.06455)	(70.80884)	(70.50637)	(70.32523)	(70.17123)
Lasarte-Oria	646.76255	650.19669	641.70621	662.82792	656.25463	661.62413	658.33748
	(59.89981)	(60.28527)	(58.27255)	(65.89817)	(62.9119)	(65.58392)	(64.08112)
Laudio/Llodio	631.66405	636.20925	638.94571	652.14579	651.34999	647.67381	647.27591
	(41.7508)	(42.11987)	(40.65761)	(28.07837)	(26.13205)	(27.44516)	(26.4582)
Laukiz	696.18303	699.13789	723.89179	721.11743	733.78694	720.17273	726.50748
	(59.78339)	(59.54295)	(61.93834)	(46.99558)	(48.89823)	(47.20822)	(48.16035)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Lazkao	637.19071	641.2244	647.25933	654.05053	655.37376	652.60491	653.26652
	(54.47513)	(55.48445)	(55.15542)	(60.5037)	(59.65332)	(59.73027)	(59.30857)
Leaburu	838.92711	830.29736	840.47655	839.8985	842.99404	838.8861	840.43387
	(46.70469)	(47.61943)	(47.5136)	(54.71994)	(53.30526)	(54.14545)	(53.43778)
Legazpi	663.35599	665.95482	679.66169	679.27133	686.55508	679.05997	682.70184
	(60.20779)	(60.40852)	(61.91561)	(64.73603)	(67.38835)	(64.76598)	(66.08521)
Legorreta	657.93138	657.64533	668.62481	673.30017	677.40815	672.56549	674.61947
	(60.41421)	(60.89635)	(61.19562)	(66.89705)	(66.79152)	(66.28038)	(66.22838)
Legutio	455.00037	449.80607	465.19784	464.62954	475.63482	468.34034	473.84298
	(32.08615)	(29.80966)	(31.78174)	(23.41602)	(24.91404)	(24.85343)	(25.59929)
Leintz-Gatzaga	970.96151	956.36895	974.71595	969.11928	978.64351	959.72066	964.48277
	(58.65787)	(58.50896)	(60.40511)	(64.16724)	(65.78617)	(63.23504)	(64.04805)
Leioa	604.06107	609.32636	589.81811	624.72397	612.75342	625.12599	619.14072
	(40.90288)	(40.72414)	(37.31941)	(28.77811)	(25.96779)	(29.31678)	(27.88605)
Lekeitio	641.50694	647.76001	640.42115	659.67926	656.34819	658.30373	656.63819
	(34.78021)	(35.30223)	(34.7286)	(25.69012)	(26.2917)	(26.36055)	(26.65597)
Lemoa	679.40001	681.65833	711.94649	700.84654	721.04316	700.59781	710.69612
	(54.15639)	(53.55416)	(59.17366)	(43.96257)	(46.98643)	(43.37527)	(44.83805)
Lemoiz	742.51055	744.11403	779.3363	763.76346	783.85729	760.44502	770.49193
	(57.93927)	(57.5007)	(61.56176)	(44.40384)	(48.93641)	(45.0784)	(47.32143)
Leza	665.17513	659.11658	671.04889	681.61133	682.31736	673.1401	673.49311
	(43.25338)	(42.94802)	(41.00326)	(25.39322)	(20.12344)	(24.53042)	(21.88691)
Lezama	676.71827	680.01494	710.85747	693.40099	711.44042	692.81008	701.82979
	(36.96588)	(37.43651)	(41.48936)	(27.01056)	(30.32873)	(27.78885)	(29.44503)
Lezo	659.4548	656.80313	660.92349	669.11166	669.78767	669.01669	669.3547
	(53.70008)	(53.38179)	(53.10234)	(58.86257)	(57.33455)	(59.12835)	(58.36295)
Lizartza	734.73702	734.52222	748.45976	745.16132	752.11881	744.50505	747.98379
	(57.40496)	(58.2703)	(59.32143)	(66.61722)	(66.95537)	(65.88532)	(66.0545)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
	-	Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Loiu	614.32607	597.74478	628.42036	618.21966	638.10047	626.01886	635.95926
	(30.88689)	(28.27684)	(32.67773)	(16.75588)	(19.37607)	(16.86867)	(18.95856)
Mallabia	801.72393	780.53075	832.11979	807.18487	837.8464	811.80566	827.13642
	(44.37992)	(42.39308)	(49.64061)	(26.07293)	(31.45052)	(25.9264)	(28.96899)
Markina-Xemein	648.87602	655.10326	695.80388	673.68692	696.21389	672.13947	683.40296
	(50.31092)	(50.70004)	(55.84678)	(39.62547)	(43.45786)	(39.60751)	(41.51654)
Maruri-Jatabe	724.94875	727.20807	767.11581	742.87207	762.79318	741.88448	751.84503
	(40.19104)	(41.05223)	(44.45588)	(28.62721)	(30.84982)	(28.85576)	(29.96651)
Mañaria	1003.6771	990.03369	1031.7368	1017.6482	1046.3962	1017.2456	1031.6196
	(73.01927)	(71.52773)	(80.34065)	(50.59171)	(59.91973)	(51.78143)	(56.29519)
Mendaro	656.74366	657.82897	670.05998	675.77949	681.9939	676.89189	679.99909
	(64.27314)	(64.01328)	(65.09428)	(62.73996)	(63.76223)	(63.75258)	(64.25973)
Mendata	1364.2721	1334.9661	1381.6076	1371.247	1397.9666	1370.9207	1384.2805
	(110.7497)	(107.3884)	(113.1207)	(88.58418)	(94.96435)	(89.64308)	(92.83334)
Mendexa	1037.1839	1022.6954	1059.5312	1056.3153	1077.5463	1056.0646	1066.68
	(105.5321)	(102.286)	(107.2215)	(92.05972)	(95.41227)	(92.54835)	(94.24568)
Meñaka	781.28135	779.66057	818.22174	793.16416	812.26943	791.47316	801.0258
	(37.86418)	(38.80173)	(42.30807)	(33.56995)	(36.42167)	(33.72969)	(35.16257)
Moreda de Álava/Moreda	538.98919	543.18328	550.55838	555.70349	556.89289	546.1937	546.7884
Araba	(35.17429)	(35.27487)	(33.67485)	(28.79226)	(28.39496)	(29.12881)	(28.93526)
Morga	1078.9693	1062.5172	1107.7929	1086.1319	1110.1835	1076.2833	1088.3091
	(75.41294)	(73.74277)	(78.38902)	(63.95751)	(68.12838)	(64.79028)	(66.87761)
Mundaka	699.91998	702.11997	728.45993	722.40723	736.80579	722.116	729.31528
	(49.26035)	(49.17633)	(52.01775)	(31.37332)	(33.39484)	(31.65186)	(32.66167)
Mungia	619.53323	627.14379	649.80351	645.06361	656.42961	643.79862	649.48162
	(45.73053)	(46.26919)	(48.28835)	(32.17889)	(33.17187)	(32.25317)	(32.74818)
Munitibar-Arbatzegi Gerrikaitz	1253.4941	1229.996	1278.6476	1253.2165	1281.0861	1250.8479	1264.7827
	(72.06304)	(70.84831)	(77.39716)	(61.09974)	(65.46104)	(61.07513)	(63.26101)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Murueta	1052.4641	1030.9844	1069.7967	1056.2151	1076.3319	1056.7419	1066.8003
	(61.99809)	(61.27039)	(64.51305)	(48.91483)	(52.17633)	(49.48597)	(51.12319)
Muskiz	656.45716	661.28506	683.01613	679.76679	690.92463	679.91855	685.49747
	(45.97754)	(46.63459)	(48.85292)	(33.48912)	(34.55661)	(33.71675)	(34.24978)
Mutiloa	954.15321	935.98164	951.57904	956.35652	962.5104	957.13345	960.21039
	(60.64741)	(60.01527)	(60.45269)	(56.5)	(57.44831)	(57.05329)	(57.52709)
Mutriku	659.4948	661.91226	670.58716	677.36163	681.19239	675.87768	677.79306
	(64.32652)	(64.65631)	(64.97128)	(68.41289)	(68.28046)	(68.57786)	(68.51213)
Muxika	773.58507	773.63313	817.75601	790.92013	816.26859	790.43796	803.11219
	(38.66431)	(39.31231)	(44.97336)	(16.70406)	(20.70751)	(16.44608)	(18.39402)
Nabarniz	1575.0895	1535.3201	1580.4393	1571.4918	1596.6214	1561.4785	1574.0433
	(105.9351)	(102.8051)	(108.061)	(82.76064)	(84.30132)	(82.2411)	(83.00874)
Navaridas	603.08118	603.14747	611.94861	621.99027	625.36538	613.74034	615.42789
	(56.43252)	(55.19745)	(53.60595)	(49.9577)	(43.32684)	(48.18147)	(44.92497)
Oiartzun	651.91355	647.4057	661.50838	666.97974	674.54695	669.22415	673.00776
	(60.69545)	(60.33235)	(61.70475)	(61.32829)	(62.87251)	(61.74899)	(62.52605)
Okondo	529.56044	536.89563	548.79287	551.72882	555.59879	547.84346	549.77845
	(34.57547)	(34.95695)	(33.78097)	(20.92394)	(14.94525)	(19.36185)	(16.36742)
Olaberria	698.27937	682.23691	702.30815	700.46973	712.07102	705.55612	711.35676
	(64.16518)	(62.02089)	(63.97893)	(70.2893)	(70.07531)	(71.09816)	(70.98576)
Ondarroa	640.72212	646.69436	666.37831	665.10095	675.46844	663.89837	669.08212
	(49.46195)	(49.37958)	(51.35852)	(36.00962)	(36.06448)	(35.95506)	(35.98777)
Ordizia	638.55204	640.74902	638.14825	652.07636	648.78833	650.83409	649.19008
	(50.14742)	(50.84541)	(49.74141)	(55.79935)	(55.08704)	(55.49998)	(55.14085)
Orendain	996.27342	981.87994	993.90269	981.99473	985.7838	980.2007	982.09524
	(51.43022)	(51.86777)	(51.74409)	(64.6809)	(62.66261)	(63.70628)	(62.67812)
Orexa	1335.348	1305.2378	1320.3622	1330.1235	1338.2462	1321.5892	1325.6506
	(123.2349)	(120.2762)	(121.7107)	(132.4862)	(133.1089)	(131.381)	(131.6934)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
	-	Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Orio	640.75842	644.256	646.8795	658.25095	659.58571	657.43654	658.10393
	(58.3121)	(58.90076)	(58.70522)	(62.97329)	(59.50513)	(61.9816)	(60.27963)
Ormaiztegi	658.45821	660.31643	669.49156	677.88607	678.50205	676.57952	676.88751
	(72.02672)	(71.64336)	(70.18229)	(76.62427)	(74.10218)	(75.79816)	(74.49763)
Orozko	719.49218	720.22631	763.11068	737.27829	763.02302	737.66049	750.53286
	(51.78684)	(51.2595)	(57.61714)	(43.54626)	(47.41003)	(44.23813)	(46.16885)
Ortuella	617.88697	622.61977	625.24617	638.98839	640.75568	638.48541	639.36906
	(40.0057)	(40.24734)	(40.6045)	(27.69094)	(29.53249)	(28.09115)	(29.00825)
Otxandio	748.2274	747.79364	782.72089	768.90092	790.51377	768.43691	779.24334
	(59.81988)	(59.04115)	(64.88185)	(45.71404)	(52.19221)	(47.16817)	(50.38877)
Oyón-Oion	506.33111	512.79249	517.90605	526.88455	526.21264	518.87025	518.53429
	(32.5845)	(33.22427)	(31.49723)	(22.29154)	(19.86161)	(21.9599)	(20.78401)
Oñati	655.18571	660.3459	672.46112	673.83858	680.33461	672.6356	675.88361
	(63.41055)	(63.57537)	(64.97832)	(66.18978)	(68.91888)	(66.79187)	(68.14731)
Pasaia	656.65442	660.39681	658.20882	676.09137	676.88875	673.13046	673.52915
	(64.11809)	(64.01358)	(64.80846)	(65.29424)	(66.01574)	(64.75529)	(65.09022)
Peñacerrada-Urizaharra	388.74239	395.16494	414.37174	408.13662	414.42004	400.90431	404.04602
	(23.67615)	(23.86575)	(22.44965)	(21.56377)	(13.12371)	(17.69403)	(13.46899)
Plentzia	659.39804	665.32243	683.40839	680.55409	688.27809	678.23366	682.09566
	(49.18081)	(49.33078)	(49.89366)	(42.95356)	(45.0812)	(43.69529)	(44.68938)
Portugalete	614.925	621.54128	589.05474	636.18914	617.14414	637.01332	627.49082
	(45.6721)	(44.83053)	(39.70665)	(33.62216)	(29.3979)	(34.22511)	(32.02223)
Ribera Baja/Erriberabeitia	411.78634	413.39774	421.8343	424.8545	429.48252	427.82646	430.14047
	(25.80561)	(24.53365)	(24.54556)	(20.85281)	(19.80376)	(20.35735)	(19.82226)
Samaniego	540.89051	542.28551	553.12614	558.945	558.76534	550.89266	550.80284
	(35.15969)	(35.55671)	(32.96632)	(26.39346)	(22.59707)	(26.00227)	(24.10147)
San Millán/Donemiliaga	346.9623	351.13134	375.56892	364.43245	374.74245	367.63933	372.79433
	(20.6795)	(20.52273)	(19.81954)	(7.431909)	(6.980951)	(7.594981)	(7.767011)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Santurtzi	607.31614	605.21871	599.99656	646.38329	621.73056	635.788	623.46163
	(43.73642)	(53.63825)	(41.4511)	(53.30986)	(29.27235)	(40.39304)	(30.37978)
Segura	657.65472	659.56423	670.08033	675.39632	677.97555	673.43362	674.72324
	(59.12864)	(59.61077)	(59.23497)	(62.41644)	(61.75916)	(61.89423)	(61.559)
Sestao	625.29715	628.11158	598.24316	644.2987	628.10319	648.75008	640.65232
	(49.3287)	(47.46908)	(43.35498)	(37.07248)	(33.61183)	(37.71291)	(35.97454)
Sondika	644.41833	637.29193	657.65728	653.66074	670.94737	660.12831	668.77162
	(40.9454)	(37.40354)	(42.47164)	(23.30286)	(24.85949)	(24.59026)	(26.03621)
Sopela	623.40716	628.56291	634.44973	646.61975	649.40902	645.5642	646.95884
	(46.00047)	(45.8816)	(46.00703)	(31.25015)	(31.50497)	(31.57888)	(31.68985)
Sopuerta	670.17789	675.18626	717.98723	694.31628	717.44097	694.28846	705.85081
	(52.22424)	(52.20861)	(56.77482)	(36.23135)	(41.27111)	(37.62397)	(40.14214)
Soraluze-Placencia de las	665.21211	668.35777	676.15512	681.73866	688.22732	679.36567	682.61
Armas	(59.05203)	(59.62521)	(61.26837)	(63.50762)	(62.85749)	(63.31853)	(62.98437)
Sukarrieta	987.12972	972.25271	1005.3058	993.96065	1012.1856	992.05258	1001.1651
	(77.96684)	(75.453)	(78.69975)	(73.62209)	(71.56468)	(74.03683)	(72.96783)
Tolosa	646.67397	651.31089	656.01571	663.88061	666.50537	662.23385	663.54623
	(58.44106)	(58.97233)	(59.53362)	(63.63198)	(64.09062)	(63.15298)	(63.37736)
Trucios-Turtzioz	1241.7532	1217.1884	1263.0064	1259.0986	1282.5179	1257.4793	1269.1889
	(123.2758)	(119.9058)	(123.9976)	(102.1429)	(103.015)	(102.7873)	(103.224)
Ubide	1424.1028	1389.011	1427.7533	1427.0421	1451.099	1423.9741	1436.0025
	(125.224)	(120.4901)	(126.11)	(109.9419)	(114.1535)	(110.8951)	(112.9922)
Ugao-Miraballes	647.27855	654.20483	678.77386	671.22761	686.31547	668.61327	676.1572
	(46.70954)	(46.81347)	(50.97833)	(34.9704)	(37.1524)	(34.25418)	(35.34621)
Urduliz	625.88185	633.01857	653.11541	650.62982	661.96374	648.53189	654.19885
	(45.35069)	(45.43779)	(47.75412)	(28.07502)	(30.99772)	(28.37397)	(29.83888)
Urduña/Orduña	642.53729	648.38632	677.24872	664.07977	681.42952	662.46266	671.13754
	(38.03568)	(38.6637)	(43.19177)	(22.05821)	(28.49684)	(23.21436)	(26.4488)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
	-	Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Urkabustaiz	424.65194	433.61006	447.06559	449.66103	453.00783	447.26507	448.93847
	(29.7886)	(30.57973)	(29.57059)	(13.93673)	(12.2674)	(14.20207)	(13.35996)
Urnieta	666.01803	665.42555	674.15167	684.372	689.97989	682.18687	684.99082
	(66.51848)	(66.45882)	(67.89848)	(67.68958)	(69.03867)	(68.25986)	(68.93141)
Urretxu	656.41391	659.53059	666.41054	674.64584	677.6423	673.28185	674.78007
	(57.49543)	(58.40858)	(59.0112)	(58.67657)	(62.36482)	(59.80553)	(61.65291)
Usurbil	656.38417	655.01564	664.53449	673.35082	677.71195	673.84432	676.02488
	(61.3348)	(61.6294)	(62.27401)	(64.46619)	(64.56181)	(64.2155)	(64.26489)
Valdegovía/Gaubea	369.77196	376.97168	396.1428	380.37437	387.11682	382.22754	385.59876
	(17.62854)	(16.40758)	(17.62244)	(19.33961)	(21.40521)	(19.35589)	(20.37995)
Valle de Trápaga-Trapagaran	608.29982	612.08882	622.13159	630.5701	636.60023	633.88871	636.90378
	(42.77536)	(42.82671)	(43.99372)	(27.89739)	(30.85372)	(28.63607)	(30.09251)
Villabona	658.2551	661.60195	668.26414	675.6374	679.79148	674.98175	677.05879
	(61.24826)	(61.60728)	(62.57846)	(65.26372)	(66.59647)	(65.32509)	(65.98834)
Villabuena de	535.37105	535.59146	548.0973	547.25969	548.92246	539.17042	540.0018
Álava/Eskuernaga	(32.06852)	(32.4054)	(29.89313)	(32.82462)	(30.25485)	(32.50731)	(31.25529)
Vitoria-Gasteiz	645.07167	643.53734	640.61892	656.19558	655.43171	657.12345	656.74152
	(32.84454)	(32.80111)	(33.16832)	(25.4838)	(25.46042)	(25.37722)	(25.36382)
Yécora/lekora	537.47202	542.04062	550.35561	556.64042	556.89297	546.95526	547.08154
	(32.95252)	(33.41649)	(31.80505)	(24.22214)	(20.15823)	(22.67977)	(20.63939)
Zaldibar	665.80871	669.85338	698.9433	690.62127	708.5085	689.66977	698.61338
	(55.40153)	(55.06047)	(59.78969)	(41.15827)	(45.04612)	(41.30307)	(43.22295)
Zaldibia	639.0869	641.39906	652.66128	656.64208	660.01951	655.1284	656.81712
	(54.42289)	(55.44589)	(55.29308)	(59.22274)	(58.49401)	(58.12768)	(57.7672)
Zalduondo	579.57226	582.15258	594.37522	592.47178	595.18636	582.48236	583.83965
	(36.76428)	(36.43596)	(34.5039)	(31.92966)	(35.46432)	(33.39178)	(35.17519)
Zalla	641.53512	646.97681	682.51225	668.79851	685.29671	666.46043	674.70953
	(43.47613)	(45.25291)	(48.69929)	(24.99302)	(32.18999)	(27.08351)	(30.72177)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Zambrana	373.04419	383.14781	396.11862	393.41048	397.90764	393.16514	395.41372
	(17.4246)	(18.05508)	(17.63404)	(6.378029)	(2.653301)	(3.291447)	(1.165602)
Zamudio	674.70772	660.74871	696.30776	688.62095	708.6605	692.1848	702.20458
	(42.94338)	(42.32599)	(46.89082)	(30.09076)	(31.92137)	(28.16834)	(29.12412)
Zaratamo	697.6019	692.1796	738.21489	713.8018	735.03326	712.92271	723.53844
	(36.15873)	(38.04324)	(42.71158)	(37.14572)	(33.68129)	(33.53255)	(31.47537)
Zarautz	650.27361	652.06359	648.54551	667.71156	665.14156	667.83086	666.54586
	(61.01015)	(61.36207)	(60.6193)	(64.64487)	(63.78646)	(64.36431)	(63.94827)
Zeanuri	891.67452	883.38911	926.8403	904.06114	929.84624	904.08443	916.97698
	(55.08151)	(54.20307)	(60.51839)	(38.01184)	(43.24025)	(38.83764)	(41.42279)
Zeberio	881.58442	876.06735	920.45713	901.01882	927.23699	899.42235	912.53143
	(66.46081)	(65.48222)	(71.91873)	(47.5008)	(51.9868)	(47.1631)	(49.41147)
Zegama	654.38709	653.92167	671.34968	667.98524	675.77687	667.47614	671.37196
	(61.55151)	(61.4017)	(62.61293)	(67.73859)	(69.18705)	(67.95099)	(68.67989)
Zerain	944.68749	930.37164	945.55299	945.35518	950.94378	936.01575	938.81005
	(56.84231)	(57.3691)	(57.90671)	(62.59723)	(63.84223)	(61.87076)	(62.48473)
Zestoa	654.32892	656.24402	666.32742	674.89892	677.75032	673.8863	675.312
	(64.71339)	(65.01056)	(64.7299)	(65.51689)	(64.40724)	(65.47612)	(64.91528)
Zierbena	690.51872	659.62899	685.111	688.26332	707.17336	700.67636	710.13138
	(53.94521)	(47.37189)	(51.39056)	(33.1792)	(34.30769)	(35.42495)	(36.26203)
Zigoitia	453.95552	454.30113	471.46267	467.95044	476.24206	468.74453	472.89034
	(31.3052)	(30.57123)	(30.78066)	(25.30793)	(27.31182)	(26.67982)	(27.69197)
Ziortza-Bolibar	1194.52	1173.9305	1211.6158	1204.4774	1228.09	1201.7437	1213.55
	(98.20025)	(94.60901)	(99.9744)	(87.50756)	(97.44254)	(85.73826)	(90.2078)
Zizurkil	656.84644	660.24677	668.79838	676.01807	679.35563	674.82002	676.4888
	(57.38307)	(58.31347)	(58.63007)	(59.506)	(59.67711)	(59.25926)	(59.34567)
Zuia	498.88435	502.88465	517.75499	515.59025	524.77871	515.19938	519.79361
	(33.47986)	(32.52686)	(33.15776)	(19.19164)	(21.51641)	(20.71723)	(21.85548)

Municipality	Current system	Local	Local	LSI OLS base +	LSI PCA base +	OLS	PCA
		Sustainability	Sustainability PCA	change	change	Capacity +	Capacity +
		OLS Index	Index			Needs	Needs
Zumaia	645.0962	646.51777	643.59988	659.54587	656.19738	660.14348	658.46924
	(56.80483)	(57.02964)	(55.60886)	(62.25452)	(59.58649)	(62.08288)	(60.72598)
Zumarraga	656.75476	659.93148	666.8657	675.93393	679.17927	673.45398	675.07665
	(61.54745)	(62.24495)	(62.74541)	(63.20121)	(64.55544)	(63.83739)	(64.52002)

ANNEX III. Table C1. Transfers per capita in each of the reform scenarios (€) (2016-2019 unweighted mean & s.d.) (continuation)

ANNEX IV. Figures of baseline results and expenditure need reforms

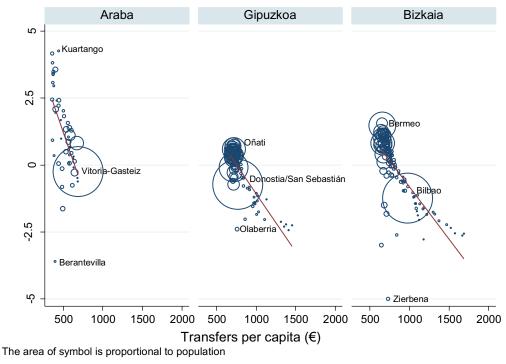
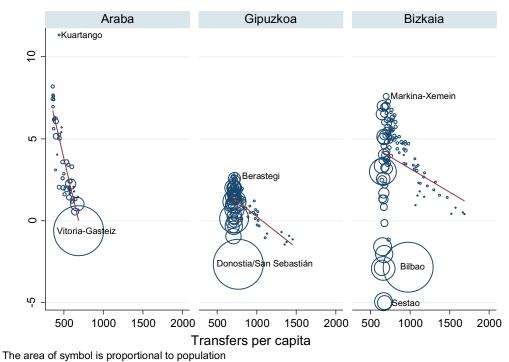
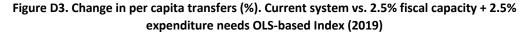
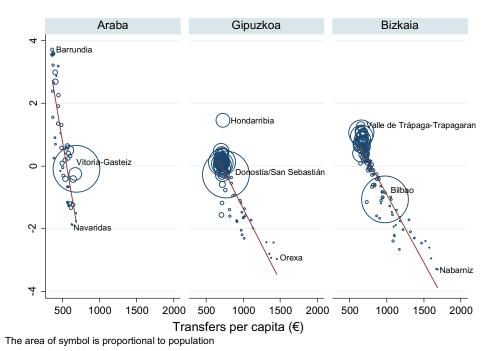
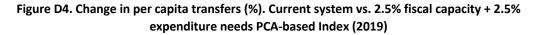
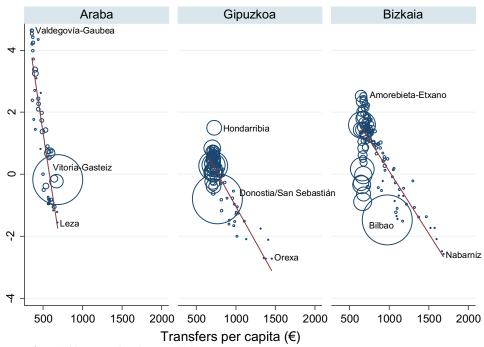
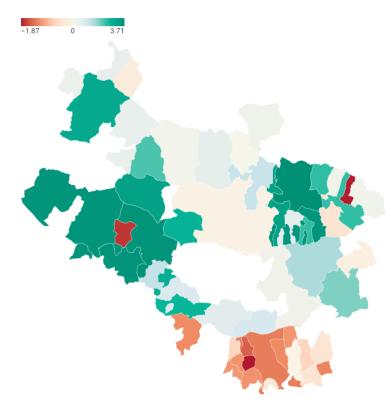





Figure D2. Change in per capita transfers (%). Current system vs. 5% base PCA-based Index (2019)




Source: own elaboration.



Source: own elaboration.

The area of symbol is proportional to population

Figure D5. Change in per capita transfers (%). Current system vs. 2.5% fiscal capacity + 2.5% expenditure needs OLS-based Index (2019). Araba

Source: own elaboration.

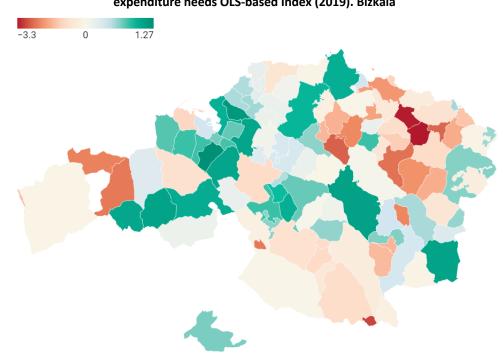
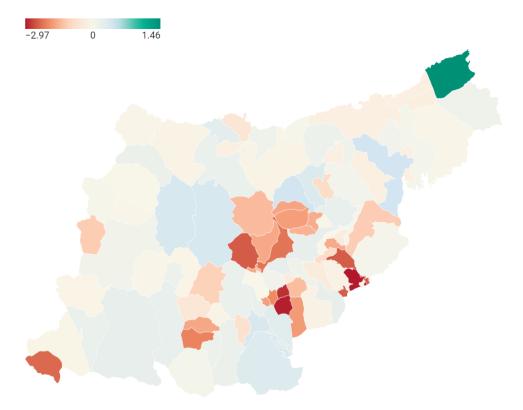



Figure D6. Change in per capita transfers (%). Current system vs. 2.5% fiscal capacity + 2.5% expenditure needs OLS-based Index (2019). Bizkaia

Figure D7. Change in per capita transfers (%). Current system vs. 2.5% fiscal capacity + 2.5% expenditure needs OLS-based Index (2019). Gipuzkoa

